rocketsled.tests package¶
Submodules¶
rocketsled.tests.deserialize_func module¶
Auxiliary file for testing utils.
- rocketsled.tests.deserialize_func.obj_func(x)¶
Objective function which sums the elements in x.
- Args:
x ([float] or [int]): List of numbers to sum.
- Returns:
y (float or int): The sum of x.
rocketsled.tests.test_task module¶
A file for testing the workflow capabilities of OptTask and MissionControl.
Note that a local mongod instance in admin mode must be running for the tests to pass by default.
WARNING: Tests reset the launchpad you specify. Specify a launchpad for testing you wouldn’t mind resetting (e.g., mlab.com) Modify tests_launchpad.yaml to define the db where you’d like to run the tests if you do not have access to admin mongod privledges on your local machine.
- class rocketsled.tests.test_task.AccuracyTask(*args, **kwargs)¶
Bases:
fireworks.core.firework.FireTaskBase
- run_task(fw_spec)¶
This method gets called when the Firetask is run. It can take in a Firework spec, perform some task using that data, and then return an output in the form of a FWAction.
- Args:
- fw_spec (dict): A Firework spec. This comes from the master spec.
In addition, this spec contains a special “_fw_env” key that contains the env settings of the FWorker calling this method. This provides for abstracting out certain commands or settings. For example, “foo” may be named “foo1” in resource 1 and “foo2” in resource 2. The FWorker env can specify { “foo”: “foo1”}, which maps an abstract variable “foo” to the relevant “foo1” or “foo2”. You can then write a task that uses fw_spec[“_fw_env”][“foo”] that will work across all these multiple resources.
- Returns:
(FWAction)
- class rocketsled.tests.test_task.BasicTestTask(*args, **kwargs)¶
Bases:
fireworks.core.firework.FireTaskBase
- run_task(fw_spec)¶
This method gets called when the Firetask is run. It can take in a Firework spec, perform some task using that data, and then return an output in the form of a FWAction.
- Args:
- fw_spec (dict): A Firework spec. This comes from the master spec.
In addition, this spec contains a special “_fw_env” key that contains the env settings of the FWorker calling this method. This provides for abstracting out certain commands or settings. For example, “foo” may be named “foo1” in resource 1 and “foo2” in resource 2. The FWorker env can specify { “foo”: “foo1”}, which maps an abstract variable “foo” to the relevant “foo1” or “foo2”. You can then write a task that uses fw_spec[“_fw_env”][“foo”] that will work across all these multiple resources.
- Returns:
(FWAction)
- class rocketsled.tests.test_task.MultiTestTask(*args, **kwargs)¶
Bases:
fireworks.core.firework.FireTaskBase
- run_task(fw_spec)¶
This method gets called when the Firetask is run. It can take in a Firework spec, perform some task using that data, and then return an output in the form of a FWAction.
- Args:
- fw_spec (dict): A Firework spec. This comes from the master spec.
In addition, this spec contains a special “_fw_env” key that contains the env settings of the FWorker calling this method. This provides for abstracting out certain commands or settings. For example, “foo” may be named “foo1” in resource 1 and “foo2” in resource 2. The FWorker env can specify { “foo”: “foo1”}, which maps an abstract variable “foo” to the relevant “foo1” or “foo2”. You can then write a task that uses fw_spec[“_fw_env”][“foo”] that will work across all these multiple resources.
- Returns:
(FWAction)
- class rocketsled.tests.test_task.TestWorkflows(methodName='runTest')¶
Bases:
unittest.case.TestCase
- setUp()¶
Hook method for setting up the test fixture before exercising it.
- tearDown()¶
Hook method for deconstructing the test fixture after testing it.
- test_accuracy()¶
- test_acqfuncs()¶
- test_alternate_builtin_predictor()¶
- test_basic()¶
- test_batch()¶
- test_complex()¶
- test_custom_predictor()¶
- test_duplicates()¶
- test_get_z()¶
- test_missioncontrol()¶
- test_multi()¶
- test_parallel()¶
- rocketsled.tests.test_task.custom_predictor(*args, **kwargs)¶
- rocketsled.tests.test_task.custom_predictor_batch(XZ_explored, Y, x_dims, XZ_unexplored, batch_size=1)¶
Testin a custom predictor function for a batch optimization.
Just uses a random sample of the unexplored space to return batch_size predictions.
- Args:
XZ_explored: Y: x_dims: XZ_unexplored: batch_size:
- Returns:
(list): ([3-dim array] * batch size) guesses.
- rocketsled.tests.test_task.get_z(x)¶
- rocketsled.tests.test_task.wf_creator_accuracy(x)¶
An expensive test ensuring the default predictor actually performs better than the average random case on the function defined in AccuracyTask.
- rocketsled.tests.test_task.wf_creator_basic(x)¶
Testing a basic workflow with one Firework, and two FireTasks.
- rocketsled.tests.test_task.wf_creator_batch(x)¶
- rocketsled.tests.test_task.wf_creator_complex(x)¶
Testing a custom workflow of five fireworks with complex dependencies, and optimization in the middle. This “complex” Workflow has the form:
fw0 / fw1 fw2
/ fw3 (optimization)
- fw4
fw5
- rocketsled.tests.test_task.wf_creator_multiobjective(x)¶
Testing a multiobjective optimization.
rocketsled.tests.test_utils module¶
Testing utility functions in rocketsled
- class rocketsled.tests.test_utils.TestUtilities(methodName='runTest')¶
Bases:
unittest.case.TestCase
- test_Dtypes()¶
- test_check_dims()¶
- test_convert_native()¶
- test_convert_value_to_native()¶
- test_deserialize()¶
- test_get_default_opttask_kwargs()¶
- test_get_len()¶
- test_is_discrete()¶
- test_latex_float()¶
- test_pareto()¶
- test_random_guess()¶
- test_serialize()¶
- test_split_xz()¶
- test_tolerance_check()¶