

Group Handbook
A guide to help you start your

scientific adventures

update: 7/18/20
hackingmaterials.lbl.gov

maintained by Anubhav Jain

 (best viewed in 2-page mode)

Table of Contents

Table of Contents 1

Preamble 6

About our group 7

Before you arrive 9

After arriving at LBNL 10

Getting set up to work 10

Getting situated in your office 12

Food and coffee 12

Mail and fax 13

Equipment and conference rooms 13

The Panic Monster 14

Postdoc union 14

Postdoc resources 15

Vacation days 15

What to do if you’re sick 15

Filling out your timecard (LETS) 16

Miscellaneous administrative issues 16

Other issues 17

Foreign travel 17

Places to work outside of your office 17

Making purchases 20

Conference travel 22

1

Asking your advisor for research help 27

“Drop-in” office hours 27

Biweekly 30-minute checkups 27

Longer meetings by appointment 28

Other times 29

Email help (and general guidance) 29

Software help groups 31

Independent projects 31

Our computing systems 32

NERSC 33

Running Jupyter Notebooks on Cori 34

Lawrencium 34

ALCF and OLCF 35

Our software stack 36

Resources for learning new topics 37

Slack 37

Books: LBNL, UC Berkeley, public libraries, and the “group library”
37

Materials Science 38

Density functional theory 38

General materials science topics 39

Online tools 40

Databases and information resources 40

Computer programming 40

Python 40

2

Data mining and Data Analysis 41

MongoDb 41

Professional skills: writing papers and presenting talks and posters
42

Eleven questions for self-assessment 42

Leaving the group 45

Group events 47

Fun things to do in the area 48

Appendix A: Finding a place to live 50

Temporary housing while finding a place to live 50

Resources for finding housing 50

Notes on the Bay Area housing situation 51

Commuting 52

General suggestions when evaluating a place to live 53

A note about UC Village 53

What are the different neighborhoods like? 54

Appendix B: Purchasing a computer 54

Mac, Windows, or Linux? 54

Preliminaries 55

Selecting a computer, monitor, and accessories 56

Making the purchase 57

Appendix C: Setting up a new Macbook 58

Upgrade your OS 58

Installing Python development environment 59

3

Install high-throughput computation environment 60

Configure Pycharm IDE 62

Other things to do 64

Contributing code to software libraries 65

Appendix D: Some notes being productive with a Mac from

Anubhav 65

Basic setup 65

Apps I use for programming 66

Apps I use for Science 68

Apps I use for working more quickly 69

Apps I use to keep things organized 69

Misc Apps I use 70

Appendix E: Our open source software philosophy 71

Appendix F: 10 of the most common Python mistakes I see from

scientist-programmers 73

Appendix G: Giving effective presentations 81

Good presentations have a thoughtful purpose 82

Three good presentations 84

Two presentations “close to home” 85

Presentation checklist 85

Miscellaneous advice 89

Appendix H: Writing effective papers 90

Writing style 90

Active vs. passive voice 90

Science is quantitative - give numbers 90

4

Use specific verbs 91

Methods section 92

Discussion section 93

Conclusion section 95

Acknowledgements section 95

Paper checklist 96

Miscellaneous advice 98

Tips/checklist for sending papers to Anubhav for review 100

Appendix I: Mechanics of writing papers in Microsoft Word 100

Start with a visually attractive template 101

Add sections and subsection headings properly 102

Insert figures and tables and their captions properly 102

Insert equations and equation numbers properly 103

Cross-referencing objects: sections, subsections, figures, tables 104

Citing articles 104

Troubleshooting 105

Appendix J: Managing the group web site 105

Appendix K: Group library 106

Appendix L: Staying up to date on research and literature

searches 106

Appendix M: some miscellaneous things 107

Thank you! 108

5

Preamble
“Organization is a means of multiplying the strength of an
individual”.
- Peter Drucker

Welcome to the HackingMaterials research group! The purpose of this
guide is to ease your transition into our research group and help make
your time here as productive and enjoyable as possible.

An editable copy of this guide, where everyone is welcome to make
comments and suggestions, is always available at:
https://bit.ly/2huxUJW

You can also download the latest “PDF release” of this guide at
https://hackingmaterials.lbl.gov/handbook.pdf

The page size of this document is A5, which makes it work well for
two-page viewing and printing. We suggest you give that a try.

This is an open document that you can freely share and adapt with
attribution and is licensed under the Creative Commons Attribution 4.0
International License. To view a copy of this license, please visit:
https://creativecommons.org/licenses/by/4.0/

For additional tips and tricks, please see the Hackbook (internal

document) on the group Google Drive.

We thank Valve software (a video game company) for openly publishing
their employee handbook, which helped inspire this effort. Also, thank

6

https://creativecommons.org/licenses/by/4.0/

you to those who help create and update this guide; each of us gains
from the contributions of those before us, and we hope you are able to
pay it forward to future members by contributing as well.

About our group
Our group is located at Lawrence
Berkeley National Laboratory (LBNL)
in Berkeley, California. LBNL is
managed by the University of
California at Berkeley, which is located
just down the hill. 13 Nobel prizes have
been awarded to scientists from LBNL.
The lab has spectacular views of San
Francisco, which is located across the
bay and is about a 30 minute drive or
BART train ride away. Berkeley itself is
a vibrant city of 115,000 people filled
with cafes, restaurants of all types, and
cultural activities.

Our group aims to tackle some the most important problems lying at the
intersection of materials science and computer science. We differ from a
traditional materials theory group in our emphasis on building
long-term software, in leveraging large supercomputers, and in applying
statistical learning to materials problems. Most of our projects use a
“materials genomics” approach, a new mode of research that has
tremendous potential to discover new materials and to improve our
fundamental understanding of how materials behave.

7

Our research group is its own microcosm within the materials science
theory efforts at Berkeley. In the same way that Berkeley is a small city
adjacent to the bigger city of San Francisco, our group is a smaller unit
linked to the larger theory groups of Kristin Persson, Gerbrand Ceder,
Jeffrey Neaton, and Mark Asta – creating a close-knit community of
materials theory within Berkeley. We also collaborate with groups
external to the Berkeley area, and thus it is almost always the case that
someone within our collaboration circle has experience with any new
methods or applications you might be interested in. We hope you are
able to leverage many of these resources during your stay!

Many new discoveries remain to be uncovered in the field of materials
design and in our relatively new subfield of materials informatics. Your
contributions are urgently needed to make this new vision a reality -
welcome!

8

Before you arrive
Although many things can only be taken care of after arriving at LBNL,
here are a few simple things you should do in advance.

Join the Slack group!
The berkeleytheory Slack group spans several research
groups at LBNL. There are channels to ask housing
questions, programming questions, science discussion,
and general hijinx.
How? Contact Anubhav - he’ll introduce you.

Order a computer!
Postdocs and graduate students - let’s order your
workstation in advance so that it’s ready by the time
you arrive.
How? See Appendix on purchasing a computer.

Find a place to live!
Berkeley and the surrounding areas are wonderful
places to live, but finding an apartment can be
difficult and is best done with knowledge of the
various neighborhoods.
How? See Appendix on housing.

9

After arriving at LBNL
Welcome to Berkeley! Here are a few pointers for getting started.

Getting set up to work
Here is a checklist of things you should complete within your first week:

❏ Set up your computer. See Appendix documentation on how

to do this and some recommended software to install.
❏ Request to be added to the group email list. Alex Dunn can

add you to hackmat@lists.lbl.gov
❏ Complete the checklist that HR gives you in your

welcome package. Note: postdocs cannot select retirement
plans; an obligatory UCRS DCP is deducted from your pre-tax
salary each month but the money belongs to you.

❏ Complete all LBNL training courses.
❏ Set up the employee wifi. Note that the visitor wifi is open

access. To connect to employee wifi, go to
https://software.lbl.gov/, search for “Wireless Networking”, and
download the configuration file.

❏ Request access to the group’s Google Drive folder.
❏ Install VPN for connecting to the lab network from

home. For example, this lets you download research articles
from home. See https://software.lbl.gov for instructions on
installation.

❏ Obtain user accounts for any computing resources you

may be using. See documentation later in this handbook.
❏ Schedule a 30-minute biweekly meeting time with

Anubhav. Ask about any other meetings.

10

❏ Obtain a license for any software packages you might be

using. For example, you may need to be added to the VASP
users list (for VASP, you should also register for the forum.)

❏ Set up the printer. The printer is located in the corner of the
third floor of building 62 near the water fountain. Follow
instructions at http://bit.ly/2sB6yIX to connect. Note: if you
are having issues connecting to the printer, ensure during setup
that the connection protocol being used is Line Printing
Daemon - LDP. Mac may default to IPP instead which will not
work. The name of the printer is ms-div-copyprnt3.lbl.gov.

❏ Request after-hours access. By default, you will not have
off-hours site access to building 62, i.e., on weekends, holidays,
and from ~6pm to 7am on weekdays. To obtain off-hours site
access, email the ESDR admin (esdradmin@lbl.gov), tell them you
need after-hours building access, and cc Anubhav.

❏ Ask to read the proposal that funds your work. This will
help explain the impact of your project, the long-term plans and
goals, and how your project fits in with other efforts.

❏ Have your picture taken for the group web site.
Coordinate a time with Anubhav, who will take the picture.

❏ Update your name tag outside your office. Contact
Charlotte Standish for help if needed.

❏ Get a key to your office. See http://bit.ly/2vGGWe9

❏ Add your name to the 62-203 mail room. Note that interns
and short-term visitors do not need to do this.

❏ Say “hi” to your neighbors! Working here will be more
pleasant if you get to know some of the people around you. One
good time to introduce yourself is when you see people eating
lunch in the kitchen area.

11

Getting situated in your office
There is no rule that says your office must be dull and generic. Decorate
your lab space with photos, posters, or other personal touches. You are
likely going to be sitting in this office for quite some time so you should
take a moment to make this space your own.

Food and coffee
There is a common kitchen in building 62 with microwave, fridge, and
coffee machine. I don’t know who the coffee machine belongs to but you
can try to make friends with whomever that is. There is a coffee
machine in the 2nd floor of Molecular Foundry ($1/cup or $15/month)
that some of the other postdocs in the group can tell you more details
about. For emergency coffee situations, Anubhav has an espresso
machine in his office that you can borrow (but wait for the go-ahead to
come in, since he is often in the middle of a videoconference).

There are no vending machines in building 62, but if you go down to
the first floor you walk to building 66 and there are some vending
machines on the bottom floor. There are also some vending machines
on the bottom floor of 67 (Molecular Foundry).

The only real food is in the lab cafe, which is about a 15 minute walk
from our building. The menu is posted at (some items change weekly):
http://www.bayviewcafelbl.com

12

Mail and fax
The incoming and outgoing mail corridor is located in building 62,
second floor. You can find an empty slot and put your name there;
sometimes, your mail will end up there, other times your mail will just
end up in a common pile, so you may need to check both. Please do not
have any personal (non-business related) mail sent to your LBNL
address - this is not allowed.

If you would like to mail something internally (including the benefits
office, which is not on the hill), first get an envelope either from 62-309
or from building 66 (room 237-250, make a left right after entering).
Scratch off all the previous mail stops and write down the destination
mail stop (something like: 90P-0101) and then put it in the outgoing
mailbox in the mail corridor in 62. There are also some miscellaneous
mailing supplies in 62-309 on the shelves.

There is a fax machine in 62-309. For outside numbers, dial 9 first, then
the country code (1), then the rest of the number.

Equipment and conference rooms
Should you need it, Anubhav has a projector that you can borrow. If he
is not in the office, feel free to go in and just grab it (it is visible on the
gray shelf). Just leave a note and remember to return it.

Anyone can reserve conference rooms through the LBNL Google
calendar. Make sure you are logged in to your lbl.gov account.To book a
room, add an event to your own Google Calendar (first) and use the

13

option within Google calendar to add a room (in the detailed options for
the calendar event). You will see a list of LBNL rooms displayed. e.g.,
62-203 (big main room) and 62-253 (smaller room with poor wi-fi).
Note that when adding a room, you will see a number in parenthesis like
(20) - that is approximately the number of people that the room can
accommodate, giving you a sense of the room size. To see the
availability of one or more conference rooms over time for planning
purposes, note that each conference room has its own Google calendar.
Just add the conference room’s calendar to your list of calendars (find the
area that says “Other calendars” and then type the room into “Add
coworker’s calendar”). For more detailed information, see
https://commons.lbl.gov/display/fac/Conference+Rooms.

The Panic Monster
The Panic Monster is a red doll in
Anubhav’s office based on a blog post from
Wait But Why. If you see the Panic Monster
on Anubhav’s desk, it is best not to bother
him. If you see the Panic Monster on your
desk, it means you have lots of work to
catch up on and you need to get working!

Postdoc union
Note that Berkeley postdocs have unionized with the International Union,

United Automobile, Aerospace and Agricultural Implement Workers of

America to obtain collective bargaining agreements. Joining the union is
an option, and many of the details are present here: http://uaw5810.org

14

You can also message the Slack group to get opinions from the current
postdocs in the group.

Postdoc resources
Berkeley Lab offers many resources for postdoc. See for example:

http://postdocresources.lbl.gov

https://postdoc.berkeley.edu/resources

Vacation days
You will receive a set number of vacation / personal time off (PTO) days
that will be outlined in your hiring package. For union postdocs, the
union has currently negotiated 24 PTO days per year (in addition to
standard lab holidays) along with other benefits.

You should coordinate the specific days of vacation and personal time
off with Anubhav, especially for an extended absence.

What to do if you’re sick
If you’re sick, do not come to the office. This is very important; otherwise,
you can get others sick and potentially bring down the productivity of
the entire group. Instead, work from home or take a sick day to rest,
relax, and recover. Simply e-mail Anubhav and let him know what
you’re doing. Just don’t come into the office!

15

Filling out your timecard (LETS)
Every month, you are required to fill out your timecard at
https://lets.lbl.gov. This is mostly straightforward but here are a few
pointers:

● To fill out your work hours, leave “Earning Type” as Regular
and “Shift” as 1. For project id, activity id, and days, use the
information Anubhav gives you. You do not need to fill out the
work/job number or the specific days on which you worked.

● For sick or vacation days, set “Earnings Type” to the appropriate
value. You will need to enter both the number of days as well as
the specific dates that you took sick leave/vacation. If you took
vacation or sick days, simply deduct those number of days from
your project (proportionally if you have multiple projects).

● In total, the number of days should match the “Work days”
listed in the top-left. Note that if it is your first or last month in
the group, this might not be true if you join/leave mid-month.

● When finished, click “Run Report”, then “Release”.
● Note that your “Leave Balance” in the bottom-left assumes 8

hours per day.

Miscellaneous administrative issues
There are now links on how to navigate various administrative items
(e.g., requesting a key to your office, requesting conference travel, etc.)
at: http://bit.ly/2vGGWe9. You may need to be logged in (and perhaps
on LBNL network or VPN) to access it.

16

Other issues
If you are struggling with stress or other personal problems, you can
contact the LBNL Employee Assistance Program (EAP), which provides
free and confidential counseling, consultation, and referral for LBNL
staff. If you are comfortable doing so, you can also discuss the problem
with Anubhav to brainstorm if there are ways forward.

Foreign travel
In many respects, LBL is similar to academic institutions. However,
when it comes to foreign travel (non-vacation), it is quite different.
There are very strict procedures if you wish to work on projects /
conduct professional activities while not in the U.S., whether that is for
an international conference or hoping to continue working remotely
while in a foreign country. If you are planning on traveling to a foreign
country for anything other than vacation, please schedule a meeting
with Anubhav as soon as you can about it and we can discuss. Note that
the issue of foreign travel has come up several times in the past and has
led to quite major problems when not handled correctly.

Places to work outside of your office
Anubhav is much more interested in your research output than where
you work. Indeed, one of the advantages of choosing computational
science as a career is that it can afford you some more flexibility
location-wise than other jobs. Overall, you are encouraged to work
where you feel best from time-to-time to maximize your energy and
productivity. The more accurate policy is that the more productive you

17

are in terms out output (see “questions for self assessment” section), the
less Anubhav cares about where you are doing your work.
If you do end up spending a day working elsewhere, follow these rules:

1. Let me know when in advance and also your collaborators
2. Get your work done
3. Be available, e.g., don’t miss meetings and keep an eye on your

email
4. Overcommunicate (i.e., send me an email with your progress

for the day)

When those rules are followed (particularly the last one), there is usually
no problem in working outside your office from time to time. Indeed,
this handbook even tells you where you might go.

Some places to work apart from your office include:

● The Molecular Foundry 3rd floor lounge
● The LBNL coffee shop and library reading room (downstairs

from the cafeteria cash register area)
● The UC Botanical Garden and Redwood Grove (free admission

for LBNL)
● UC Berkeley campus, including the Free Speech Movement cafe

which has rotating newspaper headlines
● Downtown and campus-area coffee shops

18

The Molecular Foundry 3rd floor lounge has a view overlooking San Francisco.

The library reading room near the lab cafe is a quiet and attractive place to
work.

19

The UC Botanical Garden Redwood Grove is a 5-minute walk from our offices.

Making purchases
You are encouraged to make purchases that are likely to save you a lot of
time. For example, if a commercial version of a software is superior to
open-source alternatives, then you should purchase the commercial
version. Your time is valuable and if we can solve a problem with funds,
then we should try to do so.

Purchases are usually paid for through project ids that Anubhav can
provide you with. For items less than $100, you should initiate
purchases on your own provided that you know the correct project id
(just let Anubhav know afterward so he is aware of the charge). For
items greater than $100, contact Anubhav first.

There are also a couple of important things to know about purchases
that may be different than a university department:

20

● It can be very difficult if not impossible to “pay first, get
reimbursed later” if you don’t have the prior pre-authorization.
For example, if your lab computer breaks, don’t just take it to
the Apple store, pay out of pocket for a $300 repair, and then
expect the lab will reimburse you later. Similarly, don’t make a
purchase with personal funds and expect the lab can authorize
you for that purchase later. If you have questions, contact
Anubhav.

● Note that you are also not allowed to make any commitments or
changes to a purchase request on the lab’s behalf. For example, if
you’ve already gotten authorization for a purchase but then
need to change the shipping address, need to change the date
the item is received, or make any further changes, it’s actually
the lab’s “buyer” that needs to negotiate that. This is all a little
complicated; you can refer to https://bit.ly/2ZEXEwq or talk to
Anubhav if confused.

The procedure for making purchases depends on the purchase type:

● Software: Many popular commercial software libraries (e.g.,
Microsoft Office) can be purchased through software.lbl.gov. At
check out, the approver for the purchase is Amapola Comayas
or Brendon Smith.

● Office supplies, computer accessories: Check the LBNL’s
Ebuy (not Ebay) first via procurement.lbl.gov. If the item or an
equivalent is available, this is the easiest way to make the
purchase (for both you and LBNL administration). At check
out, the approver for the purchase is Amapola Comayas or
Brendon Smith. Otherwise, see below.

21

● Books: First, see “Resources for learning new topics”. After
that, if you’d still like to purchase a book, first check if the book
is available on Ebuy - this is the simplest purchase option. If it’s
not available on Ebuy or it is much more expensive on Ebuy
than from another seller, follow the instructions below for
“other purchases”.

● Other purchases: For other purchases, please review the
information and fill out the form here (you may need to be
logged into your LBNL Google account): http://bit.ly/2kX41ZQ

Conference travel
It is important to be connected to the research community. Thus, our
group has a policy that all postdocs and grad students are required to
attend at minimum 2 conferences per year (more is fine). If it is your first
year in the group, you can simply attend the conferences and listen to
talks. After your first year, you are expected to be presenting talks or
posters at conferences. This will ensure that:

● you keep up to date on developments in the field
● you will get to know the people in the field
● you are broadcasting your work to the research community.

Many if not most people learn about new research by hearing
about it at a conference. Thus, if you want people to know
about your work, you must be willing to tell people about it.

You should identify conferences you’d like to attend several months
(usually ~4 months, perhaps ~6 months for international travel) in
advance. Usually, this is around the same time that abstract deadlines are
due.

22

Once you have identified a conference you’d like to attend, please take
the following actions:

● Tell Anubhav about the conference and what project you’d like
to present

● If this is foreign travel, you need to be very careful. DOE has
placed many restrictions on foreign travel, and if you do not
follow all the guidelines you will not be reimbursed!

● As soon as possible - submit a conference travel request form.
This form is a very basic (i.e., 2 minutes to fill out) - find the
appropriate approval form on the esdradmin web site:
http://bit.ly/2vGGWe9

○ Note that our group’s travel arranger is Charlotte
Standish

○ If you do not submit the travel request form several
months in advance, you may not receive LBNL

approval to attend. This is especially the case for any
travel outside the U.S. or larger conferences like MRS.

● If you haven’t done so already, make sure your travel profile
(e.g., your frequent flier programs) are completed for the lab.
E-mail esdradmin@lbl.gov if you don’t have one yet.

● Work with Anubhav to submit an abstract. You should send
him the proposed abstract (with all details - title, authors, text,
figures, etc.) with at least 3 days advance notice.

Note that there is usually a two-step process to approval. The first step is
“conference services” approval and the second step is TREX approval.
Confusingly, LBNL might send you a “travel approved” email after the
first step, with details about the second step hidden only in the body of

23

the email. Make sure you have both approvals before proceeding! If ever
in doubt, email esdradmin@lbl.gov

Once you have received approval to attend the conference, please take
the following steps:

● Make sure you register for the conference in time to receive any
early registration discount (normally on one’s own credit card then

reimbursed later)

● Book a hotel (normally on one’s own credit card then reimbursed

later)
● Book a flight - please do this early to avoid last-minute flight

rate spikes. For help with this step, use the “Local travel
request”, “domestic travel request” or “foreign travel request” on
the esdradmin web site: http://bit.ly/2vGGWe9 . You can also
book in coordination with Charlotte Standish with LBNL
making the booking. This works better if you identify desired
flights in advance, otherwise give Charlotte the preferred dates
and times. Note that if for any reason you book your own
flights, you should be aware of various LBNL policies on flight
booking such as preference for domestic carriers. I don’t suggest
you do this unless you have an extremely good reason.

● If you are planning to combine vacation and travel, make sure
to not exceed the amount of personal days allowed by DOE
(https://bit.ly/2X3gxtB). Note that days spent traveling to and
from the conference count as work days.

In terms of travel receipts and reimbursement:

● If you need early reimbursement, please send an email to
esdradmin@lbl.gov to see if you can get registration costs, etc.

24

reimbursed early. Note that this is not the normal procedure but
if you have a need, it should be possible to have this arranged.

● If you are traveling with funding through LBNL (i.e., most
cases), you do not need to save receipts for meals. You will
receive a per diem instead. You also do not need receipts for taxi
rides under $75, although Anubhav usually submits them
anyway when he has them. You also do not need to save your
actual airplane tickets for lab-purchased airfare, although again
Anubhav usually submits these anyway.

● If you are traveling with outside funding (e.g., the conference
organizers are going to reimburse you), save all receipts and
tickets as they may be needed for reimbursement.

● The proper way to request reimbursements for trips within the
US is through the esdradmin site’s “Travel:Domestic” tab
available at: https://bit.ly/2Y91KKl. If you have trouble, you can
email esdradmin@lbl.gov.

● For international trips (including Canada!), you should get in
touch with Anubhav and with the ESDR admin person that you
work with. That person will provide you a corresponding form
and help you through the (more complex) process of
international-travel reimbursement, and Anubhav should
approve your comments for those forms as they are reviewed
closely. You need to start the process for international travel
very early - do not wait.

● Note that you can have your travel reimbursement
direct-deposited into your bank account, which saves the hassle
of receiving and depositing checks. More information about
how to set this up is at: https://travel.lbl.gov

● Things to remember reimbursing:
○ registration costs

25

mailto:esdradmin@lbl.gov

○ hotel costs
○ baggage fees
○ Uber / taxi fare
○ rental car
○ any last-minute poster printing
○ flights (only if you booked yourself)

Pro tip: If you want to see the status of your conference requests, log in
to this sheet with your LBNL account: http://bit.ly/2n6XCe3

You can filter the sheet to your requests by right-clicking on the name
column and choosing the filter option. You should look for the
“(ADMINS ONLY) Approval status” column in order to check your
status.

Use of Airbnb: It is possible to stay in an airbnb, but the receipts and
documentation are more complicated. Therefore it is typically suggested
and much simpler to stay in a standard hotel. However for those without
fear of extra paperwork:

● The rental agreement will need to be signed by the individual
renting the property with no affiliation to the Laboratory, DOE,
or the University of California.

● A rental agreement cannot be signed for a property which is
owned by a Laboratory or University employee.

● When submitting for reimbursement, please ensure the
following documents are attached to the expense report:

○ Rental/lease agreement
○ Payment receipt (must include owner/property

manager name/phone, property address, total rent
paid, and payment date (excluding deposits)

○ Itemized list of miscellaneous expenses (if applicable)

26

○ List of those occupying the property and dates
● Travelers will not be reimbursed for non-commercial lodging

rates which exceed the published per diem rate
(https://bit.ly/2RMweBF). In addition to the above, please note
the following restrictions:

○ Cannot be submitted for a prepayment (TREX or
eRFIC)

○ Deposits and cancellation fees are non-reimbursable
○ Damage to the property is the responsibility of the

traveler(s)
● Please note, the Laboratory will not prepay or authorize a

pre-payment expense report for non-commercial lodging.

Asking your advisor for research help

“Drop-in” office hours
Anubhav usually holds 1-hour office hours twice a week where you can
just drop in anytime and ask anything (no appointment needed).

Biweekly 30-minute checkups
Anubhav will schedule a time to check up with you every other week for
30 minutes (if you are an undergraduate, the schedule may be different).
You do not need to present slides or prepare any formal presentation.
Some of the things you can do during these checkups:

27

● mention anything that is impeding your progress (e.g., lack of
equipment, lack of response from a collaborator, long queue
wait times at supercomputer, etc.)

● report what you worked on the last week and present your goals
for the next week, month, or 3 months to confirm confirm that
you are on the right track, not repeating previous work, etc.

● introduce a major problem you are facing and that requires a
longer, targeted meeting to brainstorm a solution (just present
the problem in enough detail)

● solve very small problems, such as getting feedback on 3-4
presentation slides

● request a decision about something

Longer meetings by appointment
Longer, targeted meetings are welcome so long as you have a clear
purpose for them. In particular, if a difficult decision needs to be made
or you’d like to brainstorm a technical problem, a longer meeting will
almost certainly work better than e-mail. To schedule a targeted
meeting, you should first e-mail me and tell me why you’d like to meet
(or simply describe your need at a 30-minute meeting). If a meeting is in
fact the best solution, we will work out a time and place to have the
meeting. You can use Anubhav’s public calendar to suggest a few
possible times. The best way is to add his calendar to yours through
LBNL Google Calendar (see instructions in the section about Booking
Conference Rooms). Another way is to access his calendar through this
public link:

http://bit.ly/2ncHcPo

28

Other times
Please prioritize the methods above for meeting with Anubhav in
person and do not simply “drop by” Anubhav’s office to ask questions at
random times unless:

● the matter is urgent or you are really worried about something
● the issue is of a more personal nature

In the above cases, just stop by anytime!

Email help (and general guidance)
“If I had an hour to solve a problem I'd spend 55 minutes thinking
about the problem and 5 minutes thinking about solutions.”.
- Albert Einstein

Note: Anubhav does not respond to direct messages on Slack - help is
through email or meetings only.

From time to time, you will encounter problems, require suggestions, or
otherwise need assistance from your advisor. This is normal, and asking
for help is encouraged so long as you have done your best to solve the
problem yourself. Sadly, it is all too easy these days to send e-mails
without first investigating a problem yourself, and it is important to
remember that your advisor gets many dozens of emails per day. Thus, if

29

the question is truly important and difficult, you should take the time to
address the following four questions in your email: 1

❏ What is the problem?

Clearly describe the problem, starting from the beginning.

❏ What is the CAUSE of the problem?

For example, your immediate problem may be that you need more
computing time. But the cause of your problem is perhaps that you want
to determine the best ordering of a disordered compound and that you
anticipate that this will require running many calculations. If you are
unsure how to answer this question, ask yourself “why” this problem
needs to be solved (some companies such as Toyota employ the “5
Whys” principle - i.e., asking “why” 5 consecutive times to get to the
root of the problem rather than fix surface issues).

❏ What are all the possible solutions to the problem?

You might think this means list a couple of possible solutions. That’s not
what this means. This means list all possible solutions - every single way
the problem could be solved. This includes unconventional options,
options that you may not know how to implement or think might not
work. If you don’t have any solution ideas, list all the avenues you tried
(e.g., Google search terms) to find one. If you already tried some
solutions but they failed, summarize that information here.

❏ What solution do you suggest?

Provide your reason for suggesting this solution.

1 These guidelines are adapted from Dale Carnegie.

30

More often than not, taking the time to answer these questions leads to
you solving your own problem. In the cases where that is not true, these
responses will make brainstorming solutions to your problem more
effective and will also allow Anubhav to provide feedback into your
process of generating all possible solutions.

Software help groups
If you have problems with software, and in particular the software
maintained by our group and our collaborators, you should contact the
appropriate help group. The documentation for the software will list
what that channel is; if not, try the Github Issues page. If you contact
Anubhav, make sure you address the four questions above as well as
provide everything needed (files, test code, etc) to quickly reproduce and
debug the problem.

Two other ways to get software help that are more self-guided are:

● If you are having trouble using a particular class or function,
look for unit tests within the code, which often demonstrate
how to use the class or function

● If the class or function has a unique name (e.g.,
MaterialsProjectCompatibility), another option is to both
Google and search on github.com for the particular
class/function. The github.com search will often reveal code
snippets from users all around the world.

Independent projects

31

“You’ll learn infinitely better and easier and more completely by
picking a problem for yourself that you find interesting to fiddle
around with, some kind of thing that you heard that you don’t
understand, or you want to analyze further, or want to do some
kind of trick with - that’s the best way to learn something”.
- Richard Feynman

“...it is certainly all right and potentially very productive just to
mess around. Quick uncontrolled experiments are very productive.
They are performed just to see if you can make something
interesting happen”.
- E.O. Wilson

You may have ideas for research that deviate somewhat from the scope
of your official work. If you are interested in conducting an independent
project or trying a new idea, talk to Anubhav! If it is in the group
interest, we can try to make it happen.

The main metric for a successful pitch is having a plan to prototype and
test an idea (e.g., by gathering data) in a rapid fashion.

Our computing systems
Our group’s main computing resources are:

● NERSC (the LBNL supercomputing center, one of the biggest
in the world)

● Lawrencium (our group owns 4 dedicated nodes on this cluster)
● Argonne Leadership Computing Facility (sometimes)
● Oak Ridge Leadership Computing Facility (sometimes)

32

At any time, if you feel you are computing-limited, please contact
Anubhav so he can work with you on finding solutions.

NERSC
To get started with calculations at NERSC:

1. Ask Anubhav about whether you will be running at NERSC
and, if so, under what account / repository to charge.

2. Request a NERSC account through the NERSC homepage
(Google “NERSC account request”).

3. Someone at NERSC will validate your account and assign you
computing hours

4. At this point, you should be able to log in, check CPU-hour
balances, etc. through “NERSC NIM” and “My NERSC” portals

5. In order to log in and run jobs on the various machines at
NERSC, review the NERSC documentation.

6. In order to load and submit scripts for various codes (VASP,
ABINIT, Quantum Espresso), NERSC has lots of information to
help. Try Google, e.g. “NERSC VASP”.

a. Note that for commercial codes such as VASP, there is
an online form that allows you to enter your VASP
license, which NERSC will confirm and then allow you
access to.

7. Please make a folder inside your project directory and submit all
your jobs there as your home folder has only about 40GB of
space. For example, for m2439 project, your work folder path
should be something like the following:

a. /global/project/projectdirs/m2439/YOUR_NERSC_U
SERNAME

33

8. You can also request a database for your project to be hosted on
NERSC. Google “MongoDB on NERSC” for instructions.

Running Jupyter Notebooks on Cori

Jupyter notebooks are quickly becoming an indispensable tool for doing
computational science. In some cases, you might want to (or need to)
harness NERSC computing power inside of a jupyter notebook. To do
this, you can use NERSC’s new Jupyterhub system at
https://jupyter-dev.nersc.gov/. These notebooks are run on a large
memory node of Cori and can also submit jobs to the batch queues (see
http://bit.ly/2A0mqrl for details). All of your files and the project
directory will be accessible from the Jupyterhub, but your conda envs
won’t be available before you do some configuration.

To set up a conda environment so it is accessible from the Jupyterhub,
activate the environment and setup an ipython kernel. To do this, run
the command “pip install ipykernel”. More info can be found at
http://bit.ly/2yoKAzB. If that did not work, you can also manually add
your environment. Assuming your environment is my_env in Python 3:
source activate my_env
python -m ipykernel install --user --name my_env
--display-name "aj_te (py3)"

Lawrencium
Lawrencium is somewhat different than NERSC in that we must
maintain our own software environment and pre-installed binaries for
common codes are not available. Thus, maintaining the software
environment at Lawrencium is a group endeavour. We currently have 4
nodes which means as a group we can submit jobs that requires up to 4

34

nodes and those jobs will have the highest priority to start running.
Note that if our purchased nodes is not enough to sustain our
computing needs, it is also possible to pay per CPU-hour on
Lawrencium as well as to increase our purchase order to increase our
nodes. Ask Anubhav if you think you need this.

The nodes on Lawrencium are not that fast (2.3 GHz) but there is large
number of cores (24 per node). So, it is best for codes that parallelize.
Also, make sure to do any file-based work on Lawrencium on the
/scratch filesystem, which is not purged. Any operation (loading
software libraries, output file writing, etc) that occurs on the /home
filesystem will be extremely slow. So /home is just for archival purposes,
not working purposes.

In order to use Lawrencium resources, first thing is to apply for a new
account by visiting this link http://scs.lbl.gov/getting-an-account and
fill out the user agreement form here
(https://sites.google.com/a/lbl.gov/high-performance-computing-servi
ces-group/useragreement) and then send an email to hpcshelp@lbl.gov
to request an account - make sure the email specifically requests access
to the “lr_matminer” condo. Once your account is ready and you are able
to login, you can see the group softwares that are not available on
Lawrencium by default here:
/global/common/software/m2439/example_config_cori

ALCF and OLCF
Both ALCF and OLCF are “leadership computing facilities” meaning
that they operate some of the fastest computers in the world. The
strength of these facilities is that they offer very large amounts of

35

http://scs.lbl.gov/getting-an-account
https://sites.google.com/a/lbl.gov/high-performance-computing-services-group/useragreement
https://sites.google.com/a/lbl.gov/high-performance-computing-services-group/useragreement
mailto:hpcshelp@lbl.gov

computer time available for users; the weakness is that is much more
difficult to use these computers. Therefore, it is generally only worth
using these resources if you have a significant amount of computing to
do (i.e., at least 1 million CPU-hours). Contact Anubhav if you think an
account on ALCF or OLCF would be useful.

Our software stack
A brief summary of our software stack includes:

● pymatgen / pymatgen-db - for representing and analyzing
crystal structures, as well as setting up/performing manual
calculations

● FireWorks - for executing and managing calculation
workflows at supercomputing centers

● custodian - instead of directly running an executable like
VASP, one can wrap the executable in custodian to detect and
fix errors

● atomate - for quickly defining multiple types of materials
science workflows

● matminer - for large data analysis and visualization

We also heavily use the Materials Project database.

To learn how to use the software stack, you can consult the
documentation of the individual codebases as well as review the
following resources:

● The 2018 Materials Project workshop:
https://github.com/materialsproject/workshop-2018

● The 2014 Materials Virtual Lab presentations:
https://materialsvirtuallab.org/software/

36

● The Materials Project YouTube tutorials:
https://www.youtube.com/user/MaterialsProject

Resources for learning new topics

Slack
If you have a specific question, sometimes the easiest solution is to post
it to the Slack group and crowdsource the answer.

Books: LBNL, UC Berkeley, public libraries, and
the “group library”
As an LBNL employee, you can get access to almost any book you’d like
using various channels:

● LBNL has its own library, but it is small and unlikely to contain
the book you want.

● LBNL employees can borrow books from the UC Berkeley
Library collection using your LBNL ID. You can even reserve
the book online and have it delivered to the LBNL library office
in building 50, saving you a trip down to campus (this is what I
do). Log in through http://oskicat.berkeley.edu via “My Oskicat”
and choose the LBNL login option.

● Your local library (e.g., Berkeley Public Library) often
participates in Interlibrary loans. For example, the “Link+”
system at Berkeley Public Library connects to many other
university libraries in the area. Again, you can have the items
delivered to your local library. This service is extremely useful

37

when an item cannot be found at UC Berkeley or if that item
has a long waiting list.

● Our group has some technical books that you can loan. See
Appendix K: Group library.

You can also purchase books with research funds.

Materials Science

“Don’t despair of standard dull textbooks. Just close the book once
in awhile and think what they just said in your own terms as a
revelation of the spirit and wonder of nature”.
- Richard Feynman

It can be difficult to find resources that explain concepts in materials
science clearly. Often, struggling through multiple attempts to
understand a topic using several different resources in a patchwork and
non-linear fashion is the only way forward. That said, the resources
listed below are particularly helpful.

Density functional theory

For beginners to density functional theory, I would recommend the
book “Density Functional Theory: A Practical Introduction”, which truly
achieves what it states by providing physical insights and relevant
information rather than just list equations. A copy is available within the
group.

If you are interested to explore applications of density functional theory,
you might try the E-book from Professor John Kitchin:

38

https://github.com/jkitchin/dft-book

Note that this book has chosen to use the Atomic Simulation
Environment (ASE) to set up simulations rather than the pymatgen code
that we prefer, but that is a minor point.

Finally, for specific calculations with VASP, there are resources online
from a 2016 workshop conducted at LBNL, including videos and
training materials:
http://www.nersc.gov/users/training/events/3-day-vasp-workshop/

http://cms.mpi.univie.ac.at/wiki/index.php/NERSC_Berkeley_2016

General materials science topics

To gain a quick introduction to many topics in materials science, you
might try the (horribly-named) web site from the University of
Cambridge: Dissemination of IT for the Promotion of Materials Science
(DoITPoMS):
https://www.doitpoms.ac.uk
The explanations in this site are very basic, but what they do cover is
well-explained and incorporates helpful visuals. Although you won’t
ever master a topic from this site, it is often a good starting point that
can help you unlock a more intermediate resource.

There are also some nice chapters in the following e-book:
https://en.wikibooks.org/wiki/Introduction_to_Inorganic_Chemistry
For example, Chapter 5 has a nice rundown of common crystal
structures.

39

Online tools

A nice tool for visualizing phonon modes is:
http://henriquemiranda.github.io/phononwebsite/phonon.html

Databases and information resources

The LBNL library maintains a subscription to many tools and databases
for materials science such as SpringerMaterials. A list of these is
available here:
https://bit.ly/2HCePDQ

Computer programming
Note that there are usually many excellent resources to choose from
when learning computer science topics. You usually have the flexibility
of choosing to learn from a book, a video series, or even interactive
tutorials like www.learnpython.org. Use the list below as potential
starting points, but there exist many other high-quality alternatives you
can find on your own and may be even better-suited to your needs.

Python

For pure beginners to Python, you might try the book “Head First

Python”. It is a fun and easy introduction to Python. Beginners that
know a little but not a lot of Python can also look at “How to Make

Mistakes in Python” (ebook). For intermediate programmers, you might
try “20 Python Libraries You Aren’t Using (But Should)” (ebook). For
advanced programmers, you might try “Expert Python Programming”.

40

Data mining and Data Analysis

For learning basic data mining libraries (pandas, scikit-learn) as well as
some skills like using git and Github, you might try the online YouTube
videos from Kevin Markham, an educator at Data School. These videos
also do a good job of pointing you to supplementary material:
https://www.youtube.com/user/dataschool

https://github.com/justmarkham

You might also try the book “Python for Data Science For Dummies”
(please note: this is different than “Data Science for Dummies”).

For a more materials-centric view, you can try working your way
through the Machine Learning In Materials tutorial in the Appendix of this
handbook.

A very comprehensive set of suggestions for further resources is listed
here:
http://bit.ly/2jHXIVJ

MongoDb

A (now somewhat old, but still clear) resource for beginning to use
MongoDb is the “The Little MongoDB Book”:
https://github.com/karlseguin/the-little-mongodb-book

There is also an extensive library of webinars on MongoDb on their
official web site.

41

Professional skills: writing papers and presenting
talks and posters

● If you have only a relatively short time, try this e-book from
Nature Publishing Group: http://go.nature.com/2opiiQh . It is
illustrated by Jorge Cham from PhDComics and is packed with
good advice.

● I have written more about giving good presentations in
Appendix G - use that for additional tips.

● If you have longer, try the book Trees, Maps, and Theorems in our
group library (Appendix K). It is from the same author as the
Nature e-book (Jean Luc Doumont).

Eleven questions for self-assessment
You might be curious as to whether you are on the right track from a
professional standpoint. You can ask Anubhav to give you feedback
periodically, and you should do this at least every 6 months or so. Here is
a cheat sheet of things he considers when thinking about your progress.

1. How self-driven is your work?
a. I am far ahead of my supervisor in understanding and

guiding my project, so it’s necessary that I
conceive/design/imagine/build most of what I do. i.e., I
am given a vague topic to work on by my supervisor
and it’s my job to determine both the important
problems and design the solutions.

b. I originate maybe 50% of the ideas that I work on; the
other 50% are from my supervisor. Or, given a good

42

description of the problem by my supervisor, I figure
out the solution largely independently.

c. Almost all of what I do was sketched out by my advisor,
including the problem and the rough solution; my job is
to implement those ideas.

2. When I am assigned a task, I usually complete it:
a. To an even higher quality standard than asked for

and/or much quicker than expected
b. approximately on time and well-tested and robust so

that I know that my solution works under diverse
situations. I can declare “mission accomplished
successfully” the vast majority of the time.

c. To minimally achieve the original goal, thus often
requiring future revision; OR very late; OR usually by
getting someone else to solve most of the hard parts for
me

3. Compared to others in the group, I:
a. help them more than they help me
b. help them about the same as they help me
c. help them less than they help me

4. Regarding the relevant scientific literature for my project, I:
a. regularly impress my supervisor by integrating new and

important papers into my research that were not on my
supervisor’s radar

b. have about an equal share of papers I receive from my
supervisor versus papers I have discovered on my own
(and subsequently adapted my research to account for
those papers, i.e., have read and understood them)

c. typically am the recipient of interesting papers to read
from my supervisor

43

5. In the last year, I have attended (if first year in group) or
presented a talk or poster (if in group longer than one year) at
at:

a. More than 2 international conferences (not project
workshops / meetings)

b. 2 international conferences
c. One or zero international conferences

6. In the last 9 months, I have submitted to a journal:
a. Multiple first-author papers, or one stellar (e.g., quality

level of Nature, Science, etc.) first-author paper
b. One first-author paper, or significant co-author on a

stellar (e.g., quality level of Nature, Science, etc.) paper
c. No first-author papers

7. When I present a draft of a paper and/or presentation to my
supervisor, usually I get back:

a. Minor revisions
b. Medium level of revision
c. Major revisions

8. Will my main work serve as a lasting contribution that others
will use and refer to in 5-10 years time?

a. There is a good chance my work will remain important
even after 10 years

b. Probably 5 years, 10 years is a stretch
c. Honestly, probably not

9. When my supervisor assigns tasks (e.g., at in-person meetings,
etc.), I:

a. complete tasks quickly and efficiently and provide my
supervisor with an update

b. get around to doing almost all tasks eventually

44

c. often forget to complete tasks (e.g., forgot to write it
down, etc.) and often need to be asked a second time

10. Have you received any external awards or recognition for your
work?

a. yes, in the last year
b. yes, in the last 3 years OR my work was featured in a

news story (LBNL news, DOE news, etc.) in the past
year

c. not in the last 3 years
11. How is your passion and enthusiasm level?

a. I feel extremely excited and happy about work
b. About normal
c. I feel burnt out or demotivated

If your answers are mainly (c), the questionnaire is probably telling you
something that you already know -that you should take some time to
reflect on your situation. You might also schedule a meeting with
Anubhav to discuss things. If you are answering mainly (b), then you are
likely doing fine but it may be worth brainstorming if it’s possible to
move into category (a) for one or more of your responses. Otherwise,
continue the great work!

Leaving the group

If you are leaving the group, we wish the best in all your future
endeavors! Some things to ensure before leaving:

● Complete and submit any papers that are close to completion
● Transfer any knowledge or code you have to others; train

others to the extent possible

45

● Transfer any data (e.g., stored at NERSC) to others
● Retrieve any information you need from your LBNL computer

accounts (email, Google Drive, etc) - your LBNL accounts will
not be accessible after you leave. It’s possible to have your LBNL
account extended, talk to Anubhav or human resources. For
example, if you need to continue collaboration with LBNL, an
affiliate status might be granted - this retains your LBNL
affiliation.

● If you have any subscriptions paid for under your own account
via LBNL funds (e.g., MongoDB Atlas, etc) make sure to
retrieve the data and cancel those subscription OR transfer the
subscription to someone else. Note that LBNL credit cards will
deny charges past the initial approval dates, and this can lead to
missed charges and lost data.

● If you have purchased any software subscriptions (e.g.,
Microsoft Office), note down the license number of those
subscriptions so they can be re-used by the next person.

● After doing everything above, clear off your computer so it can
be used by someone else
(https://support.apple.com/en-us/HT201065)

● Make sure that the “Exit Checkout Sheet” is filled in and handed
to LBNL. Otherwise, LBNL will follow up to make sure it’s
complete later on.

● Postdocs, see further instructions below

Specific instructions for postdocs

If you are planning to leave the group as a postdoc, please let Anubhav
know as soon as possible. It usually takes 3-4 months to complete a
postdoc hire at LBNL, so a standard “2 weeks notice” will mean that your
project will likely go vacant for 3 months, impacting the efforts of all

46

your collaborators and colleagues. With advance notice, we can work to
make sure that your own future plans are not impacted while also
making sure that all your projects and work can transition smoothly.

If you are a postdoc:

● Use the following link to submit a voluntary resignation letter:
https://bit.ly/2yptUG3

● If you have PTOs remaining you can set your official last day as
a later date than the last day you will be physically present in the
lab (work with HR on this)

● If you have any questions about the exit process, you can email
Human Resources at ETAHR@lbl.gov.

Group events

Some of the regular things we do as a group are:

● Lunch every two weeks jointly with our group and members of
Persson research group

● ~Monthly coffee hour at Molecular Foundry
● Twice-yearly “CodeBusters” events, where we spend 3 days

hacking on code together
● Twice-yearly “Work Away From Work” where we can share

some interesting space to work that it’s not the LBNL main site
● Yearly “Group Day” where we share our work, have discussions,

and zoom out on the big picture of our group
● Sporadic events such as group hikes

47

A hike on the Matt Davis - Steep Ravine trail.

Fun things to do in the area
Make time to explore some of its recreational activities in the Bay Area.
Although there are probably hundreds of online and print resources that
can help guide you to things to do, here are a few select ones to start you
off:
❏ UC Botanical Garden (walkable from our office and free for

LBNL employees)
❏ Berkeley Marina (walking) - either the boardwalk or the Cesar

Chavez loop
❏ Ohlone Parkway Trail (easy bike)
❏ Indian Rock park
❏ “Off the Grid” food trucks
❏ Elmwood shopping area or outdoor Emeryville mall

48

❏ Detour App - guided tours for locals through your phone
❏ Berkeley Jazz / Theater
❏ UC 50% off performing arts at Zellerbach Hall
❏ Tilden State Park, e.g., Lake Anza trail
❏ Bike the Golden Gate bridge to Marin (longer bike)
❏ Bioluminescent kayaking tour in Point Reyes (pick a night with

little moonlight)
❏ SF Film Fest
❏ Baker beach walk up to Golden Gate Bridge (“Batteries to

Bluffs” trail)
❏ Ice Cream - Mitchell’s, Humphrey Slocombe, Bi-rite, Ice Cream

Bar (skip the line, go directly to the back bar and order a “New
Orleans Hangover” - non-alcoholic)

❏ Muir woods redwood forest
❏ Drive to Muir Beach Overlook
❏ Drive up to Mount Diablo
❏ Hike - Stinson Beach / Matt Davis trail
❏ Wine country / Sonoma
❏ Point Reyes Lighthouse - Elephant Seal season Dec - Feb
❏ Route 1, Big Sur (Bixby bridge area), and “18-mile drive”.
❏ Explore Monterey and Carmel-by-the-Sea
❏ Lake Tahoe - skiing in the winter,

hiking/biking/cruises/tourism/casinos in summer
❏ Visit Yosemite National Park

Appendix A: Finding a place to live
Note: It is encouraged that readers of this document also contribute to it
when they have gained experience with their own housing situation by
adding comments or emailing Anubhav with their suggestions.

49

Temporary housing while finding a place to live
You may consider finding temporary housing, e.g., through Airbnb, for a
month or so while finding a more permanent place to live. It is easier to
find housing while you are in Berkeley itself; however, depending on the
cost of your temporary housing and moving costs, this strategy can be
more expensive.

Resources for finding housing
Unless you are part of a program that assists you with finding housing,
you must find a place to live on your own. Some resources for finding
housing include:

● http://www.zillow.com/

● https://calrentals.housing.berkeley.edu/

● http://sfbay.craigslist.org/search/eby/apa?

● http://csee.lbl.gov/Housing/Other_Housing_Resources.html

You can join the LBNL postdoc mailing list (http://bit.ly/2nAHAXE).
You do not have to be a postdoc to join. Keep an eye on the posts for
room/apartment to rent as well as moving sales.

Notes on the Bay Area housing situation
The Bay Area is a very nice place to live, which has the consequence of
many people wanting housing here. Thus, one of the few problems with
this area is the very high price and competition for housing. Some things
you should be aware of:

50

● prices in the $2000/month range for a very basic apartment are
normal - and can easily go up from there.

● buildings tend to be older, and amenities like dishwashers and
heating/cooling are hard to find unless you pay premium prices.

● it is normal to have a lot of competition for a place such that
you must agree to a lease on the spot or risk losing out.
Examples:

○ Anubhav thought he had finalized a place to live for his
first year in the North Berkeley area, but during the
final signing period another bidder put in an offer for
$300/month greater and he thus lost the place.

○ One postdoc in the group thought he had finalized a
deal for a place to rent but was late to an appointment
to meet with the owner and ended up losing the offer
on the spot.

You might not expect these kinds of situations unless you are from a
similar area like NYC, so please be aware of them.

Commuting
Note that if you use public transportation daily, you should consider
signing up for LBL’s program which lets you deduct a bus or BART pass
as a pre-tax expense. See http://www.wageworks.com/ for more info.

Biking here is common and there are many bike lanes and shared
car/bike routes, but you still need to be careful as biking to the lab will
mean going through traffic. The LBNL shuttle has bike racks so you can
bring your bike up to the lab with you on the shuttle rather than bike
uphill.

51

Note that the Nextbus app and website will give times that the LBL
shuttle (and also city buses) are anticipated to arrive at various stops.

If you are in a rush or just need to get around town, Uber and Lyft are
apps that can help get your a ride; the fees tend to be pretty low,
especially with UberPool if you’re not in a hurry.

If you plan to drive, make sure use the feature in Google Maps to
estimate commute times at a specific time of day. If you are headed in the
same direction as traffic to San Francisco, there are very significant
delays near rush hours.

General suggestions when evaluating a place to
live

● Look for the nearest grocery store
● Look for the nearest pharmacy
● Do a search for restaurants. Often, the density of restaurants in

a place will tell you whether there are other things there as well.
● Perhaps do a Google Street View walk-through of the

neighborhood
● Do a Google Transit search on how to get to the lab. Note that

to get to the lab itself, you cannot take public transportation.
Instead, there is a lab shuttle from several spots in downtown
Berkeley and near campus, so you might want to gauge how to
get to the nearest shuttle stop. Google “LBL shuttle map” to see
the locations of the stops.

52

● Remember that Uber is very convenient in the Berkeley area, so
not everything needs to be ideal location-wise if you need to
just get somewhere once in awhile.

A note about UC Village
Many postdocs, especially those with families, find that UC Village
(sponsored housing from UC Berkeley and LBNL) is a nice place to live
and also enjoy the community. Anubhav doesn’t have any personal
experience with UC Village so it is best to research for yourself through
a Google search (it does seem very friendly to having children - e.g., a
nice park).

What are the different neighborhoods like?
If you want to know how specific neighborhoods or cities surrounding
Berkeley are like, the best way is to post a question to the #help channel
on Slack. You can usually get very good and relevant advice.

Good luck!

Appendix B: Purchasing a computer

Most long-term appointments (graduate student, postdoc, staff) will
mean purchasing a new computer. Exceptions include:

● If you are joining an existing project for which another staff
member is leaving behind a state-of-the-art computer (e.g., 1-2
years old), we may use that one instead of purchasing a new
computer.

53

● Short-term appointments (e.g., internships) will not involve a
computer purchase unless otherwise stated - you will instead
receive an excellent computer from the group’s stock.

Mac, Windows, or Linux?
You should buy a Mac, and probably a Macbook. Although this sounds
extreme, and may even induce strong feelings if you are used to a
different system, in practice this has never been much of a problem.
Note that I am not an Apple fanatic but simply find that these are the
best systems for our type of work because they contain many of the
advantages of both Linux and Windows systems in a single package.

Why not Windows? Anubhav used Windows for a very long time; it is
nice, but a couple of things make it non-optimal for our work. There is
no native Terminal, which you will use heavily, and programs like
Cygwin are poor substitutes. Certain seemingly minor decisions made
by Windows (directory slashes, line endings) are different than those
from Linux, making interoperability between Linux/Mac and Windows
systems more problematic (e.g., copying files to and from
supercomputing centers can require converting line ending format).

Why not Linux? Linux is fine, but Microsoft Office is not available
(which is used by us and most of the materials science research world)
and OpenOffice is a poor substitute. Certain videoconferencing software
doesn’t work well with Linux.

How about Mac? I have my complaints about it, as they are catering
more to the general consumer and less to developers. Thus, you really
need to spend some time setting up your Mac to make it productive for

54

power users (see Appendix C and Appendix D on how to accomplish
this). But for the moment it remains a very good compromise between
Linux-like and Windows-like and thus forms the basis for our
workstations.

Preliminaries
Here is how to purchase a computer at the lab. Before we begin, a few
notes:

● In terms of the mechanics of purchasing:
○ use LBNL Ebuy (not Ebay) wherever possible - you

need to be on the lab network (onsite via an ethernet
cable) or be connected via the VPN

○ use Amazon, etc. to buy various components if not
available via EBuy

● The laptop is government property; you are expected to return
it to the group when you are done working at LBNL. Note that
Mac computers make it very simple to transfer everything over
to your next computer.

● You are free to take your laptop home, on trips, etc., unless you
are an intern in which case other restrictions may apply from
the internship program.

● The lab receives your computer and tags it before sending it
over to you.

Selecting a computer, monitor, and accessories
Your computer workstation is one area where you should just get
whatever you think will make you most productive and not care about
cost. Seriously, just get what is best and do not worry about cost.

55

For the computer, you should select a Macbook Pro (any screen size) as
mentioned above. You can use the Apple website to browse details.
Anubhav uses a 13” Macbook Pro. It is powerful enough to do serious
work and light/small enough to use on a plane. A 15” Macbook Pro is
also a good choice. If you would like to get anything other than a
Macbook Pro, talk to Anubhav.

For the monitor, Anubhav uses a single Thunderbolt display but this is
no longer available. One option available is the LG 27MU88-W (4K
resolution) monitor which is on Ebuy. Note that one big screen is
usually better ergonomically than dual monitors, and you can use the
“Spaces” feature of Mac OS/X to quickly flip between virtual screens if
needed (this is what Anubhav does).

For accessories, make sure to get:

● An extra charging cable
● A VGA adapter dongle
● An ethernet cable adapter dongle
● A Time Machine hard disk (for backup), I have currently use

the Western Digital 4GB Passport for Mac

● A keyboard. I suggest Apple Wireless Keyboard since I like the
feel of Mac keys and I also like a consistent feel between my
laptop keyboard and my desk keyboard. If you prefer a larger or
ergonomic keyboard, you can get that.

● A mouse/trackpad. I suggest Apple Magic Trackpad. Note that
I’ve found that a mouse is better on Windows but a trackpad is
better on Mac. The reason is because the Mac OS has really
customized a lot of the interface for the trackpad (e.g., gestures).
I also value consistency between my laptop and desk

56

workstation. After awhile you get used to doing everything on
your trackpad even if you were previously very
productive/accurate with a mouse on Windows.

● (optional) A presentation tool, e.g., Logitech R800

Making the purchase
1) Provide all the details of your selections in an email and send to

Anubhav. If all looks OK, he will give you a project and activity
ID.

2) Go to eBuy, and for items available there, add them to your cart
and submit the requisition with the project and activity ID, and
SAS approver as Amapola Comayas or Brendon Smith.

3) For items not available on eBuy, contact esdradmin@lbl.gov
(and cc Anubhav) to obtain a procurement form. Fill it out with
item details (Vendor, website, price, etc.) and send it back to
her.

4) If you select the overnight shipping option (ask Anubhav about
this and the related extra costs) most parts, except the computer,
will arrive within a week to 10 days. The computer needs to be
tagged by the lab, so with overnight shipping, it should arrive
within 2 weeks. Ideally, you will select your computer well
before arriving at the lab and won’t need overnight shipping.

5) Note that receiving the laptop can take up to 6 weeks from the
order date.

6) To track your purchase, contact an administration assistant in
the energy technologies area, currently Tracee Tillman
<ttillman@lbl.gov> (Jan 2019).

57

mailto:ttillman@lbl.gov

Appendix C: Setting up a new Macbook

Upgrade your OS
If your computer is not using the latest OS, you should upgrade to the
latest OS first.

Installing Python development environment
The best way to manage Python installations these days is a “conda env”.
This will allow you to manage different Python “environments”, where
each environment is a set of libraries that you have installed. For
example, you can have one environment that uses Python 2.7 and has
certain library versions installed, and another environment that uses
Python 3.5 and has other libraries installed. Another advantage of conda
environments is that you can apply the same procedure on NERSC and
other computing centers that support conda.

How to do this:

● Follow the online instructions on installing a conda
environment and see modifications below:

○ http://conda.pydata.org/docs/using/index.html
○ (probably) prefer to install the “miniconda” version

rather than anaconda
○ Install “miniconda 3”. We work in Python 3.8+ these

days.

58

○ When creating environments, use a command like this
(note that this also installs recommended libraries):

conda create --name py3 python=3 numpy
matplotlib seaborn plotly pandas flask
pymongo scipy sympy scikit-learn jupyter

○ If you want a reference guide to conda commands, try:
http://conda.pydata.org/docs/using/cheatsheet.html

Install high-throughput computation environment
Our group has a set of base codebases used for performing
high-throughput calculations. Note that if your project does not involve
high-throughput calculation, you may need only one or two of these
libraries installed – contact Anubhav if you are unsure.

● Install the following packages using a combination of git
clone >>REPO_NAME<< and python setup.py develop.
Start with:

○ git clone
https://www.github.com/materialsproject/fir
eworks

■ You might need to generate an ssh key for the
git clone command to work:

● ssh-keygen -t rsa -b 4096
● no password is probably OK unless

you are security conscious
● add your SSH key to your Github

profile

59

○ Then:
cd fireworks
while read requirement; do conda install
--yes $requirement; done < requirements.txt
&& python setup.py develop
python setup.py develop

■ note that the middle line is not technically
necessary, but will install requirements with
anaconda which might be better than pip

○ Repeat the process above but replace “fireworks” with:
■ pymatgen

● this one might be tricky, because you
need a modern C compiler. You can
try installing gcc-8 with homebrew,
then setting the following
environment variables:

○ export
CC=/usr/local/bin/gcc-8

○ export
LDFLAGS="-L/usr/local/opt
/lapack/lib"

○ export
CPPFLAGS="-I/usr/local/opt
/lapack/include"

■ pymatgen-db
■ custodian
■ atomate (note: this is on the hackingmaterials

github site)
■ matminer (note: this is on the hackingmaterials

github site)

60

● If you want, you can automatically source activate your
environment in your .bash_profile file. This will automatically
load your environment when you open a Terminal. Otherwise,
you will start off in your default Mac Python and will likely
cause you a lot of confusion

Configure Pycharm IDE
An IDE allows you to be a much more productive coder. It is like a text
editor but contains many useful keyboard shortcuts, code-completion
tools, refactoring tools, and debugging/profiling tools to help you be
more productive. It can also automatically reformat your code to trim
line lengths and add proper whitespace to be in-line with recommended
Python formatting guidelines.

Pycharm is the group’s recommended IDE for Python and they offer a
free community edition (CE) that contains all the features you need.
There are other programs you might consider like Sublime Text,
although those are more like advanced text editors than proper IDEs.
Note that there are some advanced programmers that know their way
around an IDE but still prefer an editor like vi or emacs with appropriate
plugins. This is fine so long as (i) you are an advanced programmer and
(ii) you have first tried an IDE for a few months and really tried to make
use of it, but find that it hampers your productivity. Note that most
people that think they fall into category (i) do not and I find them
making mistakes that could easily be avoided with an IDE. Thus, it is
recommended that essentially everyone in the group use an IDE.

After downloading and installing Pycharm and launching it for the first
time, you’ll be asked some options. I suggest using the default Mac OS X

61

keymap unless you are already very familiar with Emacs or other
keymaps. Note that these things can be changed later if desired.

Next, and assuming you’ve already cloned the source code of your
desired repos from Github, you do the following:

1. Create a new project (give it any name)
2. In the menu bar, click Pycharm CE -> Preferences -> Project ->

Project interpreter. Change this to your conda Python
interpreter. You can also set your default interpreter from
File->Default Settings->Project Interpreter and set that to your
conda environment interpreter. Do not skip these steps!

3. Click File->Open and navigate to the root folder of one your
desired repos (I suggest pymatgen to start) and click open.

○ Make sure to select “open in current window” AND
check “add to currently opened projects”

4. Repeat step #3 for all your desired codebases. When finished,
you should see in the sidebar all the various codebases.

If you want to try adding some of your own scratch code, then:

● Navigate in the sidebar to your main project folder (folder with
your chosen project name). Right-click and click New->Python
package. Give it a name.

● The previous command created a new folder. Navigate inside
that folder, right-click, and choose New->Python file. When
finished, that folder should contain two .py files - __init__.py
(created automatically for the new Python package) and your
chosen filename.

● Finally, type some code in your new file. It can be simple as
print("hello world"). To execute the code, you can use

62

Ctrl+Shift+R with default Mac keybindings or go through the
“Run” menu for more options.

Now you are all set! There are many things you might want to do:

● Configure the way your Pycharm window looks. For large
monitors, Anubhav likes Project Navigation and Version
Control at left, main code in center, and “Structure” panel on
right which is basically like an outline of a particular Python file
showing all the classes, functions, etc. at a glance.

● Explore the various options and capabilities of PyCharm.
Appendix D of the handbook has some tips and you can enable
PyCharm’s “tip of the day” which will really step you through
some of the great features.

Other things to do
● Set up your Time Machine backup (make sure you have

purchased or received an external hard disk). Just plug your
backup drive into your monitor so when you connect to your
monitor, you also back up. For detailed instructions, see:
https://support.apple.com/en-us/HT204412. If there are (for
some reason) errors in backing up, fix that issue immediately.
The lab also has an online backup program which is another
safeguard against lost data: https://bit.ly/2PVPHfM.There are
zero excuses for not doing this.

● Install MongoDB, if you are using databases.
● Purchase Microsoft office from LBNL software distribution.

Anubhav uses Office 2011 since he finds it stable and usable, but
others in the group have had good luck with the most recent
versions. Ask around if unsure.

63

Contributing code to software libraries
If you are unfamiliar with how to contribute back to the various
software libraries we develop through Github, refer to the procedure
described here:

http://bit.ly/2AYeT0j

Appendix D: Some notes being
productive with a Mac from Anubhav

Basic setup
● Macbook Pro 13” laptop
● Thunderbolt Display (now discontinued)
● Apple keyboard
● Apple Trackpad - less precise than mouse, but can be very

productive if you learn all the gestures (e.g., for web browsing
back/forward, for mission control, for swiping between
different Mac “Spaces”)

I use an Apple keyboard and Trackpad so that typing/navigating is
similar whether I am at my workstation or whether I am on my laptop.

Early on, I turned up my Trackpad speed all the way to the max. This
means I can very quickly move the cursor all the way across the screen.

64

It took a few days to get used to this very sensitive setting but now I
don’t even notice it (when other people use my trackpad, they usually
freak out…)

There are many options I set to make OS/X more oriented for power
users. For example, my Finder window shows directory paths at the
bottom, I have sidebar shortcuts to many important locations, I display
hidden files, I have a shortcut to copy the path of the current Finder
location to the clipboard, etc. There are many settings like these for
various built-in OS/X apps, but unfortunately I don’t remember them
all. Getting a good Finder setup is probably the most important.

Apps I use for programming
● I use the PyCharm IDE. Things I like about PyCharm include:

○ underlining errors
○ underlining code “lint”, e.g., spacings that do not follow

PEP
○ code highlighting / editor features (e.g., when you open

a CSS file, lines of code that define a color automatically
display a swatch preview of that color)

○ a nice and powerful search tool (regexes, find/replace
in certain files, easily filter through results visually and
categorize by what type of file they occur in)

○ autocomplete (ctrl+space)
○ autofix errors, i.e. red underline stuff (option+enter)
○ follow definitions of variables, methods, classes

(Cmd+b)

65

○ quickly open classes (Cmd+o) and files (Cmd+shift+o)
and variables (Cmd+option+o). Or simply tap shift
twice to search across everything.

○ go back to previous/next file being edited like
forward/back on a web browser (Cmd+[or Cmd+])

○ the “find usages” command
○ quick documentation lookup (F1)
○ fixing all the various spacing / formatting issues

automatically (Code -> Reformat code and Code -->
Auto-indent lines).

○ code refactoring
○ structure view of code. I usually have “Project” view and

“Version Control” at left of window, code in middle of
window, “Structure” view at right of window, and
“Todo”, “Terminal”, and “Python console” at bottom of
window (along with search results).

○ debugger (sometimes, typically only for heavier
debugging issues)

○ easy IPython console to test code snippets
○ there are other commands that I use, but those are the

ones I use most often
○ note that others use the git integration, which avoids

needing to leave PyCharm to pull/push/etc. to Github,
but I prefer Gitbox for this purpose. I just leave Gitbox
in an adjacent “Space” (virtual screen) on my Mac and
use a swipe gesture to quickly flip between screens.

● MongoHub (for visually exploring Mongo databases). Other
options are Robo 3T (https://robomongo.org), Studio 3T, and
MongoDB Compass.

66

● Gitbox (I almost never use the Git command line; Gitbox is
unique in that it is really easy to preview changes to the remote
before pulling them in. It is also the most intuitive Git tool I
know of). Another one to consider is GitKraken which has a
free version and looks fun (if I were starting from scratch, I
might learn GitKraken).

● Patterns (for tricky regexes) - although the free web site
https://regexr.com is just as good.

● Cocoa JSON Editor (for examining large JSON)
● Balsamiq Mockups - wireframes

Apps I use for Science
● CrystalMaker (and sometimes Vesta) - crystal structure

visualization
● Zotero - reference management
● MS Office Suite

Note that I use Zotero not only for reference management but also for
taking notes on articles. Some of the things I like about this system:

● The notes are kept together with the articles, so I can quickly
bring up the article if I am reviewing the notes

● I can easily see which articles I took note on because I can add a
column header in Zotero to show the number of notes for each
article.

● The notes are very quickly readable as plain text (versus hunting
for notes on the PDF itself) and I can export them easily via
BibTeX export. This retains all the notes I took in the BibTeX
in case I need to migrate to another system later.

This system isn’t perfect but has worked well enough so far.

67

Apps I use for working more quickly
● Alfred - application launcher, quick file opening, quickly go to a

web site. Note that if you don’t use Alfred, the built-in Mac
Spotlight now includes some of its features.

● Trickster - for easily calling up recent files, e.g. drag a recent file
from Trickster into an email

● Default Folder X - the most useful feature of this is that it can
add a sidebar to your save dialog that lets you access recent
folders. This is 95% of the time where I want to save something.

● Fantastical - for quickly scheduling meetings or looking at my
schedule

Apps I use to keep things organized
● Evernote
● 2Do - allows for complex todo lists, but also easy to use and

intuitive. All my tasks are managed here.
● Screenshot Plus - Mac widget for quickly capturing screenshots

(if like me you can’t remember the keyboard shortcuts)

Misc Apps I use
● Bartender - allows you to clean up and reorganize your (top)

menu bar; especially useful on a 13” screen. (Also check out a
free competitor called Vanilla)

● Moom - keyboard shortcuts for half-screen, full-screen, etc. like
Windows has had since Win7. (Also check out Spectacle/ShiftIt

68

for the same purpose, which are free but I’ve found can
sometimes cause compatibility problems on Mac updates)

● Mousepose and IMovie - screencasts
● Tomato One - if I find it hard to be productive or am avoiding

doing something, I revert to Pomodoro method with 40 minute
sessions and 10 minute breaks

● Focus - for sometimes restricting internet browsing if I really
can’t focus (usually combined with Tomato One)

● Safari for web browsing (I find the experience to be very
visually smooth and pleasing, e.g., when paired with Trackpad
Gestures. For example, a two-finger pinch shows all tabs in a
window.)

● Pocket - for saving web pages to read later, and then usually
never getting around to it

● Time Machine - not only for backups, but also for sometimes
recovering past versions of files that might have gotten
accidentally changed / overwritten.

● CrashPlan - online backup (also consider BackBlaze)
● Inbox When Ready - a Chrome extension that helps control the

flow of your email (requires checking your GMail via Chrome)
● Spotify - music
● Pixelmator - image editing
● Not an “app”, but I subscribe to “10 things you need to know

today” e-mail newsletter by TheWeek which contains enough
news that I don’t need to check it throughout the day.

69

Appendix E: Our open source software
philosophy

“If you want to go fast, go alone. If you want to go far, go together”.
- Attributed to an African proverb

Although we develop both open and closed source pieces of code in our
group, we try our best to release any software that is potentially useful to
more than one person as open source. This ends up being almost all the
software that we write except perhaps code written to conduct a specific
scientific analysis.

Benefits of open-source software include:

● authors can include the code in their portfolio for future job
applications

● you get recognition from the community of users of your code
as well as personal pride

● more users means more bug reports - this sounds scary but is in
fact very useful and important for your own research

● outside developers can contribute fixes and features, so your
code gets better for free

● much less friction - easy to share code, fork it, etc. without
needing to set up permissions or access. Easy to distribute and
install the code, e.g. via PyPI

● many services like CircleCI and PyCharm offer their products
for free when the codebase is open source. Not only does this
save money, it more importantly saves a lot of time in

70

coordinating purchasing requests through LBNL that need to be
renewed.

● your own programming will automatically improve because
your code is open source and public. You will be more likely to
write documentation and write clean code if you know it is for
the world and not only for yourself. This will also encourage
writing the code in a more general manner rather than specific
to your application.

● you can write a paper about your code whenever ready. There is
no separate process of “making the code open source” if it is
already open source from day 1.

● it is the right thing to do for the betterment of the research
community!

Clarifying common misconceptions about open source code:

● Writing open source code almost never exposes you to getting
scooped or having some outsider leapfrog you in research. First
of all, it is very rare that an outsider will use your code rather
than make their own, especially if you do not advertise your
code. Most of the time, you will have the opposite problem -
i.e., to convince people to use and trust your code. Second, as
the code author you are the expert in the code. Even when there
is an outside user, it is rare that they are as proficient as you in
the use of the code. Third, the majority of people are friendly
and not as manipulative as you may think.

● Open source code doesn’t need to be perfect, nor does it even
need to be any good. Often people think that they will make a
code open source when it is “ready”. This is not the right
approach; code does not need to be “ready” to be open source.

71

● Publishing a code as open source doesn’t mean that you need to
support the code or vouch for its correctness. You are offering
the code publicly without any guarantees whatsoever, and you
don’t have any additional obligations to anyone. However, if
you actively want your code to be used by the community and
extended, then be prepared to document and support your code,
and to help users and resolve their problems. But this is a
separate decision. It is perfectly OK to have an open-source
code for which you provide no support so long as you don’t try
to advertise it for more than it is. It is still better than having
that same code be closed off.

Appendix F: 10 of the most common
Python mistakes I see from
scientist-programmers

There are many, many books and articles on writing better Python code.
Please use those if you want to really desire to become a good
programmer. Here, I am just focusing on some of the most basic things
that I think are particularly relevant to the types of scientific
programmers we get in the HackingMaterials group.

Note: I used this site: http://markup.su/highlighter/ to help write code
blocks with coloring. For additional flair, you might also try using:
http://instaco.de

1. Prefer data structures that don’t require memorizing
array indexes.

72

Don’t use a data structure (like a list/array) that requires one to
remember that “index 8” is the species string and “index 1” is the
coordination number.

Bad:

my_data = ["Fe2O3", 6, 5, 43, 4.1]

cell_volume = my_data[1] * my_data[2] * my_data[3]

is_insulator = my_data[4] > 3

Better:

my_data = {"formula": "Fe2O3", "a": 6, "b": 5, "c": 43, "band_gap": 4.1}
cell_volume = my_data["a"] * my_data["b"] * my_data["c"]
is_insulator = my_data["band_gap"] > 3

Notice how much easier it is to follow the logic of the code in the second
example?

You can also use a pandas DataFrame object if you have lots of data and
don’t want to repeat the same column headers many times or a
namedtuple if you just want something lightweight.

2. Document all classes and methods in a standard format

It is really important that all classes and methods are documented. Code
is much more often read than written (a tenet of Guido van Rossum), so
it needs to be readable and understandable. If you don’t know what
format to use, try the below:

73

http://bit.ly/2nAxlT0

You should also pay attention to the format already being used by a
particular package.

3. Inside of classes/methods, write code that is readable
without documentation whenever possible

This is usually achieved by writing descriptive variable names, function
names, and good interfaces to functions. As a small example, why do this
(requires documentation to tell user what my_d represents):

my_d = {"Mg": 3, "Ag": 8, "Li":4} # dict of el. symbol to coord. number
all_element_symbols = my_d.keys()
all_coordination_numbers = my_d.values()

when you can do this (same clarity in first line, better clarity in last two
lines, no documentation):

elsymbol_coordnum = {"Mg": 3, "Ag": 8, "Li":4}
all_element_symbols = elsymbol_coordnum.keys()
all_coordination_numbers = elsymbol_coordnum.values()

 Of course, sometimes you will need to write documentation - but
usually to explain why, rather than how. Here is the perfect article about
that - it is short and sweet:

http://bit.ly/2pgFQXs

Read it!

74

4. Follow PEP formatting guidelines

Following proper code formatting helps clarify your code. There are a
billion PEP rules and you don’t have to follow all of them. But at least
get the basic ones correct. Like:

● functions/methods are named like this:
my_very_first_method()

● classes are named by CamelCase like this: MyVeryFirstClass
● python files are named like this: my_very_first_file.py
● python modules are named like this: my_very_first_module

If you use an IDE like PyCharm, it will detect, underline, and
automatically fix most of the worst cases for you, so learn to use the
feature. There are also tools like PyLint that you can use separately from
IDEs (PyCharm basically has a nice wrapper around PyLint).

Also, don’t use ugly code separator comments like
“############################” or ASCII art - stay clean and professional.

5. Use standard file formats

Use JSON or YAML most of the time if you need a file format, e.g., for a
settings file. XML is very heavyweight and quickly being outdated. Don’t
invent your own strange conventions (like CIF or any other custom file
format).

6. Wrap exe code in ‘if __name__ == “__main__”:’

Python often runs your file even when you don’t intend it to, e.g. when
loading a module or importing some component of your file. It is

75

important that you don’t run code as a “side-effect” of this. Use the if
__name__ == “__main__” wrapper to prevent this.

7. Be aware of Python gotchas, in particular mutable
default arguments

Do you see anything wrong with this?

def append_to(element, to=[]):
 to.append(element)
 return to

If you don’t see it, then you’re going to get hit with some strange and
difficult to pinpoint bugs downstream in your code.

This is a common Python gotcha (there is lots of discussion online about
it)
http://bit.ly/2nijUdp

http://bit.ly/1wfFNKa

8. Write unit tests

Scientific researchers often don’t write tests because (i) they don’t write
large, complex code with many moving parts or many different authors,
(ii) they are overconfident about their ability to write correct code, (iii)
they feel this will slow them down. Professionals write unit tests because
they know that the longer and more complex a codebase becomes, and
the more users it has, the more likely that something is going to go
wrong down the line and the greater the dividends that are paid from
writing unit tests. Unit tests allow code to be automatically tested for

76

bugs every single time anyone makes a commit (continuous integration)
and has demonstrated its value many times over in the large production
codes that we use and develop - even (and perhaps especially) for ones
required to do complex tasks on a deadline.

9. Throw exceptions rather than returning coded results

One of the most common beginner mistakes is to think that their code
should never throw Exceptions or Errors. Perhaps this is because in the
beginner’s mindset, Exceptions are associated with bugs (e.g., they run a
code with a bug and see an Exception, so Exceptions are bad). Another
issue is that beginners never want their code to interrupt the operation
of whomever is running it. So rather than throwing an Exception when
their code is given bad inputs, they will return None, -1, or False, so that
they don’t interrupt whomever is calling their code.

This is bad. If the user gives bad or nonsensical input to a function, an
exception needs to be raised and the program needs to stop immediately
if the user is not explicitly catching the exception. For example, if you
try to use the Python math library to compute the log of a negative
number [>> math.log(-1)], it doesn’t return None or some nonsense like
False or -1. It throws an Error! As a user, the error is much more useful
than any other course of option. Think of the alternatives for
math.log(-1):

● If the function returned -1, you would have returned an
incorrect result (extremely bad). For example if your function
computed math.log(x) * 3, and you gave a negative x, your
function would return -3 - which looks perfectly reasonable but
is completely wrong! This is the worst possible thing you can
do.

77

● If you return None or False to avoid inconveniencing the user,
you have just made two mistakes. First, the user doesn’t really
know that their input was bad; perhaps it is simply the
math.log() function has a bug leading to the strange output. The
second and more important issue is that a user might want to
run the math.log() function over an array of 1 million integers,
and then do a lot of complex processing after that. If math.log()
didn’t immediately throw an error when encountering a
negative number in the 1 million integer array, then the code
would keep proceeding with nonsensical results and the user
might finish 5 or 6 additional processing steps downstream
before the code finally chokes and dies because there are strange
“Nones” or “Falses” where there should have been
numbers.There are even more dangerous situations that can
occur, like a second library to compute standard deviations that
ignores None values in the array. Then the user has unwittingly
taken the standard deviation of only a subset of the data and
never even knows that there was a problem in the pipeline. At
that point, it becomes extremely tedious to trace back the source
of the error.

Code should fail immediately when there is invalid input. In general, the
further the “distance” from the actual place where the problem
originated and the point of failure/exception in the program, the more
difficult and maddening the debug task. You are doing users a favor by
moving program failure right to the place of the problem.

10. Prefer python lists to numpy for simple things

78

Numpy is great, but it is often overused (leading to worse code). Numpy
is great for algorithmic work, for very complex slicing of
multidimensional arrays, and for a host of other things, but it is not as

good for creating basic data structures. Here are some advantages that
Python lists have:

● Python lists have cleaner built-in functions and code. There are
lot of tools for Python lists, like index slicing and iterations, or
functions like sum() and all() that make them very powerful
while still very clean. Numpy has even more useful functions
and operations than that (e.g., a built-in mean()), and
sometimes you might need numpy in order to leverage those
features, but there is no need to transform to numpy arrays to
(for example) take the sum of an array. Master regular Python
lists first before reaching for numpy because you will have much
cleaner code.

● Python lists can be easily appended and modified without lots of
“filler” like figuring out how long the array needs to be in
advance and populating with zeros before modifying values.
This again leads to much cleaner code and is much easier to
write and to read.

● Python lists can be easily serialized and deserialized, e.g. to
JSON format where they are native.

● Despite the claim that numpy is fast, numpy lists, arrays, etc can
actually take a lot of time to initialize - maybe 100X more than
default Python. Of course, if you are then going to heavy
processing on that matrix, like diagonalizing a large matrix or
doing large matrix multiplications, numpy will absolutely
improve your overall performance, perhaps to large degree. But
for simply creating a data structure or taking the sum of a list,

79

you will perform much worse with numpy while writing less
readable code.

● Python lists are more universal; they don’t require dependencies
and they are readable by many more programmers.

Note that this doesn’t mean to stop using numpy. Numpy does lots of
things that regular Python cannot and it is an extremely powerful and
useful library. But for routine file parsing (where being able to append
easily is important), data representation (where serialization is
important), overall code clarity (always important), and even speed for
routine tasks (usually important) the native Python lists often have the
advantage.

Appendix G: Giving effective
presentations

“I am a successful lecturer in physics for popular audiences. The
real entertainment gimmick is the excitement, drama and mystery
of the subject matter. People love to learn something, they are
‘entertained’ enormously by being allowed to understand a little bit
of something they never understood before. One must have faith in
the subject and people’s interest in it.”
- Richard Feynman

“I would drop everything to hear him lecture on the municipal
drainage system.”
- David Mermin, about Feynman

80

Good presentations have a thoughtful purpose
The first step to giving an effective presentation is to understand their
value in achieving goals that are difficult to attain otherwise. Here are
just some of the ways in which giving presentations can be be helpful:

● to establish your expertise and to have your name recognized by
the people in your field, especially independent to that of your
supervisor

● to encourage people to collaborate with you
● to convince people to test your theory/prediction or to

influence the research direction of others
● to convince someone or a committee to target you for a job

offer or offer you funding for your idea
● to encourage people to cite your paper
● to encourage people to use or contribute to software that you’ve

developed
● to receive useful feedback on preliminary ideas you may have
● to “test” the talk itself, i.e., gauge audience reaction and points of

confusion (based on the after-talk questions) to improve
subsequent presentations (like a stand-up comedian at a small
venue)

● to simply help expand your audience’s knowledge about a
particular subject and “tell them something you’ve learned”

● to solidify your own thoughts about a topic!

Before you begin designing your presentation, you should be clear about
one or more very well-defined goals you want to achieve by giving the
presentation. For example, if you want to encourage people to use
software you’ve developed, you’ll need to include slides explaining its

81

capabilities and benefits to the community and as well as how to obtain
and perhaps use the software. If you want people to test your theory,
you should include slides suggesting how and why people might attempt
this. If you want feedback on your ideas, you should further emphasize
points of confusion / unresolved problems.

Note that you should not underestimate the value of giving
presentations simply to establish your expertise and to promote your
work. You may think that doing good research or writing a paper is
enough. Unfortunately, this is usually not the case. Take the example of
musicians: they cannot simply record an album and sit back expecting a
devoted following of fans. They must instead earn their fans by going on
tour and generating excitement about their music, perhaps starting out
as a small and relatively unknown “opening act”; if they do a good job,
the live act will encourage people to investigate the recordings. It is not
much different for science; when you obtain a valuable result, you
should go “on tour” and focus on disseminating it.

In summary, first decide on your goals for giving a presentation, then
design your presentation around those goals.

Three good presentations
There is no single good presentation style. A good presenter doesn’t
have to be authoritative or have a low voice. You don’t have to change
your natural personality to give a good presentation. Here are some
examples of people with different personalities nevertheless giving
effective presentations.

82

● Donald Sadoway (15 mins): formal, authoritative, high
salesmanship yet also unconventional/creative with
well-rehearsed spontaneity (e.g., use of blackboard):
http://bit.ly/1WuEkeK

● Walter Alvarez (22 mins): approachable, casual / unpolished yet
poetic, with several tangents - yet inspiring wonder in the
subject: http://bit.ly/2ov568E

● Mick Mountz (12 mins): not necessarily a “natural speaker”, but
makes a boring subject (packing boxes) fascinating through a
great presentation structure and slides: http://bit.ly/2oSwO1y

None of the talks are perfect, and thinking about why will help your
own presentation skills. However, the above talks are able to get the
audience interested in the problem and invites them to briefly join them
in their field of study. This is in contrast to talks that try to oversimplify
concepts or try to sugar-coat them with fancy graphics - i.e., present
problems solutions in a way that is different than the way they
themselves think about it. This is a mistake that many other TED-style
talks or cable TV documentaries about science make. These talks also
include small tangents that could easily be the subject of other talks. You
can learn a lot from seeking out and taking notes on good presentations.

Two presentations “close to home”
Here are two of my previous presentations:

● Alvarez symposium (2011, immediately following my PhD) -
this was a general audience (non materials scientists) and the
purpose was to honor the late physicist Luis Alvarez. I’m clearly
a bit nervous but have pretty good slides to lean on. This is also

83

the first time a talk of mine was recorded and I learned a lot by
watching it. http://bit.ly/2pWKiuW

● University of Wisconsin summer school (2014, ~3 years past
my PhD)- the audience were all materials scientists interested
in learning modeling techniques. By now I am more
comfortable in giving a talk and have corrected some of the
errors of the previous talk. http://bit.ly/2pEflZm

Presentation checklist
Here is a checklist you can use to improve and verify various aspects of
your presentation.

Easy things to do:

❏ Number your slides. Numbered slides make it easy to refer to
specific slides during the Q&A or feedback period.

❏ Confirm all font sizes are large enough so that even

people in the back of the room can read them. One good
way to do this is to make the fonts way too big, then reduce the
size until manageable (rather than starting too small and
increasing from there, which in 90% cases leads to fonts that are
still too small).

❏ Write slide headings as snippets that contain useful

information. A bad heading would be “Effect of +U parameter”.
A good heading would be “Band gap and VBM d-character increase

with +U parameter”. There is a style of slide called
“evidence-assertion” that is generally very effective and should
be used often.

❏ Sharpen your images. Rescaling images in Powerpoint tends
to make them appear soft, and projectors can also be less sharp

84

than your display. Use “Format Picture->Corrections->Sharpen”
to sharpen all your images and make them clearer for display.

Intermediate things to do:

❏ Minimize the use of written text. Research demonstrates
that your audience cannot read text on your slide and process
what you are saying at the same time. Every second they are
reading, they are not listening to you. In contrast, audiences
have no trouble simultaneously listening and processing visual
information (diagrams, images, etc.). Design your slides to
account for this quirk.

❏ Convey information through multiple “channels”. Ensure
that critical information is not only contained in your
speech/delivery but also through a visual channel (images or
short text phrases / conclusions). People may not be able to hear
you or might be distracted by their own thoughts for many
moments in your presentation. Or, they might not understand a
visual diagram and be helped by reiterating the point a different
way through your dialogue. Having multiple channels
maximizes the chance that they will receive the signal of your
talk even when there is external “noise”. More advanced
presenters will use body language or position as another
“channel” through which to convey information.

❏ Rehearse your talk for “flow”, “momentum”, and “energy”

and cut slides that disrupt flow. Rehearse your talk, paying
attention to the slides/sections in the talk where you are (i)
struggling to explain a slide, (ii) where your energy /
enthusiasm level drops, or (iii) the momentum of the talk seems
to be slowing down. One symptom of such struggling is talking
quickly in order to explain everything on the slide. 90% of the

85

time, I find that removing such slides from the talk (i.e., moving
it to an Appendix/supporting slides) is the best course of action
- even if I initially think that slide is important. Rehearsing the
section again usually reveals you can maintain the energy and
flow of your talk much better without the obstruction of having
to explain that slide, and you can explain away the missing
concept in a sentence or two while retaining the momentum of
the previous slides. If it turns out the slide was in fact critical,
then perhaps re-design the difficult slide as multiple slides to
more gradually set up the concept.

❏ Memorize the order of your slides; use “Slide sorter view”

to help. During every point in delivering your presentation,
you should be able to picture what the next slide in the
presentation is. If you can do this, you are more likely to speak
in a way that naturally connects between slides rather than
abruptly stops/starts between slides. Some presenters use
“presenter view” in Powerpoint during their talk to help with
this, but I would say that depending on this feature is less likely
to lead to smooth explanations than memorization. To mentally
remember the order of slides, I stare at the slide deck in “Slide
Sorter” view. The “Slide Sorter” view can usually show me most
or all of the presentation at once since each slide is a small
thumbnail, and I can easily see the visual overview of essentially
the entire presentation. Thus, I can remember the visual
arrangement of slides by studying the Slide Sorter view and can
roughly flip through the presentation in my head.

Advanced things to do:

❏ Video record yourself rehearsing the talk and watch

yourself. Although you may find this uncomfortable or

86

strange, you will learn much about your presentation style and
areas to work on. Often, Anubhav will do this during your
practice talk with him.

❏ Connect your talk with the other talks in the session. You
should modify your pre-rehearsed presentation based on the
other talks in the session. You can move quickly through topics
or introduction that have been covered a few times before and
you can highlight how the other talks connect with your work.

❏ Use an app like “Color Oracle” to see what key figures in

your slides look like to color blind audience members.
About 8% of the males in your audience likely have
deuteranopia and having figures that account for this can be
useful. There are color palettes for color blindness that one can
find online, e.g., http://colorbrewer2.org. You likely won’t want
to do this for all your slides, but might be worth it for showing
key results.

❏ Use an app like “Orai” to improve your vocal delivery.
Orai will have you read sample text and analyze your speech for
clarity, pacing, and emotion.

Miscellaneous advice
● Make sure you clearly “sell the problem” before presenting your

work and your solution. In many good talks, the problem is
described in a way that the audience feels (i) that the problem is
important and (ii) that they understand the problem well
enough to start brainstorming their own solutions before you
present your solution (something like a mystery novel). Note
that this is different than a paper/written document that simply

87

tries to convey information efficiently. In a presentation, it is
useful to have some drama and create some audience
engagement.

● Some techniques to help give better presentations are:
○ add comparison points (e.g., 1 kilogram of this material

can store enough energy to power a light bulb for 10
hours; or, the amount of computer time involved, if
done on your laptop, would take 50 years)

○ use analogies, particularly when presenting to a
non-specialist audience (i.e., the material soaks up
lithium ions like a sponge)

Appendix H: Writing effective papers

Here are some miscellaneous tips for writing papers. There also some
good tips in the short article below (which echo many of the things I
write below, such as the importance of a discussion section and how it is
better to be short than long):

https://serialmentor.com/blog/2013/8/29/writing-a-scientific-pa

per-in-four-easy-steps

Writing style

Active vs. passive voice

This is one of the unending arguments about writing style for scientific
papers (active: “We conducted a DFT study...” vs. passive: “A DFT study

88

was conducted ...”). In general, I prefer the active voice about 80% of the
time, with the exception of the Methods section for which I typically use
passive voice. This is in-line with most modern recommendations from
multiple sources, although one can certainly find disagreements. Note
that journals like Nature state that they always prefer the active voice.

Science is quantitative - give numbers

Always provide numbers, not just text.

Bad: “The computations and experiments agree very well.”
Good: “The computations and experiments agree very well, with an r2 of
0.89 and a mean absolute error of 0.2 eV (Table 3).”

Bad: “The Seebeck coefficient for layered chalcogenides was previously
found to be very high,[3-5] making these systems interesting for
thermoelectric applications.”
Good: “The Seebeck coefficient for layered chalcogenides was previously
found to be very high (in the range of 300-400 microvolts/K),[3-5]
making these systems interesting for thermoelectric applications.”

In particular, the abstract of the manuscript should contain all Very
Important Numbers (number of materials investigated, major result
numbers, number of good compositions found, etc.) as well as important
compounds, techniques, etc.

Use specific verbs

One of the ways to tighten and polish a manuscript is to use more
specific verbs.

89

For example, instead of “We study”, try one of the following:
● apply, assess, calculate, compare, compute, derive, design,

determine, develop, evaluate, explore, implement, investigate,
measure, model

Instead of “Figure 1 shows”, try one of the following:

● plots, illustrates, presents, exhibits, demonstrates, indicates,
reveals, depicts

Typically, such refinements would come at a later stage of the
manuscript and is not something to worry about in the first draft -
although if you write often enough, you’ll gain the ability to use more
specific verbs in earlier drafts.

Methods section
DFT based

If you are writing a DFT-based methods section, be sure to include:
● DFT code used and version (e.g., VASP v5.2.x)
● version of software(s) used to do other things (e.g., atomate

v0.9.1)
● pseudopotential type (preferably with more details if multiple

variants with different # of core electrons exist)
● functional(s)
● major functional parameters (including +U values or HSE

mixing parameters)
● k-point mesh (or algorithm used to determine this)
● electronic and ionic cutoff energies (or algorithm used to

determine this)

90

It’s better if you can list all this explicitly in the text (either main or
supplement) rather than refer to some other paper that has details. Not
everyone has access to all our papers, plus it is just a pain for someone to
track down information across many papers.

Machine learning based

For machine learning papers, be sure to include:
● size and details of full data set
● data cleaning, filtering, normalization, etc.
● strategy to do train-test split or train-validation-test split, CV,

nested CV, etc.
● features/descriptors tested
● any feature normalization, feature processing, or feature

selection strategy employed
● algorithm(s) chosen (e.g. random forest)
● hyperparameter selection strategy, and values of optimal

hyperparameters if possible to summarize
● ideally, a link to a code repo where someone can run the same

trained model on their own data set

Discussion section
“Meaning is the relationship of the foreground figure to the
background”
- Bruce Lee

I’ve found that many researchers, even senior ones, either skip a
Discussion section or do a poor job of writing one. Note that it is
certainly possible and sometimes advantageous to folding the discussion
into the results, but in the majority of cases I’ve found that this strategy

91

is advocated by those who don’t write good discussion sections. Thus, I
suggest first writing a separate Discussion section to ensure that the
discussion is strong on its own, then folding components into the
Results section later as needed.

Some of the things to do in the discussion section:

● Put your work in the context of past results in a way that is
deeper than the introduction (i.e., now that you have presented
your results, you can really show how those fit in or don’t fit in
with prior results). Do your results match, modify, or disagree
with prior results?

● Explain any limitations of your work as well as whether those
limitations could potentially change any conclusions or limit the
range of applicability of your work.

● Show and explain which of your results can be explained by
existing theory / chemical principles / paradigms.

● Highlight which of your results can NOT be explained by
existing knowledge in the field. Provide your own thoughts on
any outlier points / unexplainable results. These do not have to
be correct, just plausible. If such thoughts are testable by further
computations, you should test them and show the results (even
negative results can be shown to rule out possibilities). As stated
by Richard Feynman: “The exceptions to any rule are most

interesting in themselves, for they show us that the old rule is wrong.

And it is most exciting then, to find out what the right rule, if any, is. ”
● Offer any new design rules you can come up with and discuss

any important tradeoffs that might need to be made.
● If you offer any computationally testable hypotheses, then test

them, don’t just theorize. For example, let’s say you are trying to
explain why compound A has a larger band gap than compound

92

B. You hypothesize that it’s because compound A has a smaller
cell volume than compound B. Many people will just leave it as
that. But what you should do is to actually compute both
compound A and compound B at the same cell volume (either at
that of A, that of B, an intermediate volume, or all 3) and show
that the discrepancy between band gaps goes away. Then you
can chalk up the discrepancy to volume confidently instead of
just theorizing.

You can see an example of a discussion in one of my earlier papers:
“Relating voltage and thermal safety in Li-ion battery cathodes: a

high-throughput computational study”.

Conclusion section
Many researchers copy-paste and re-word the abstract for the
conclusion (or vice-versa). However, this section can include more.
While you should certainly summarize the paper’s main results, don’t be
afraid to also use this section to speculate about the future. This
includes:

● how your results might be applied to various materials classes or
analyses

● suggestions for future study, either to be conducted by yourself
or by other researchers

● what kinds of further advancements would be most useful or
needed

93

Acknowledgements section
It may not seem like it, but the acknowledgements section is one of the
most important parts of the paper when it comes to research funding. In
fact, funding agencies usually ask us to write out the full

acknowledgements section for every paper we published with that funding.
This text decides the degree to which we get “credit” for the publication
in the eyes of the funding agency.

For the acknowledgements section:

● Thank anyone for help with the project that is not already an
author on the paper - e.g., if someone helped introduce you to a
topic or method, or contributed in some small way

● Thank any software library that you did not already cite /
mention in the main paper

● Ask and confirm with Anubhav the text that should be used to
acknowledge the funding agency. If this is primarily our work,
we should have some text that says the project was
“intellectually led by” or “primarily funded by” our funding
source. There is a big difference in the way we report papers
funded with those words in the acknowledgements versus
missing those words.

● If you used any supercomputing resource, find the guidelines
for acknowledgement and make sure to follow them. This text
is often needed in order for the paper to qualify for computing
time renewal grants. For example, the text for NERSC is listed
here: https://bit.ly/2Q5eAVV

94

● Some guidelines on funding acknowledgements from LBNL’s
MSD, which is also applicable to us for the most part, can be
found here: https://bit.ly/2CMhhHU

Paper checklist
Here is a checklist you can use prior to having a “final” version of your
paper.

Pre-”final” checks:

❏ All the numbers in the manuscript are correct. Most
researchers double-check their text and wording multiple times
before paper submission, but don’t specifically and separately
check all the numbers in their text. I’ve identified many errors
in “final” manuscripts simply by having a separate check for the
numbers without paying attention to the text.

❏ All acronyms are defined during their first use.
❏ All important prior works and research groups are cited.

You should give credit to prior works where it’s due and give
readers a broad perspective of the field and various approaches.
Also note that this can often be the difference between a referee
supporting your work and rejecting it.

❏ The abstract and conclusion summarize all the Very

Important Numbers. For example, these sections summarize
how many materials were studied, the value of any outstanding
property measurements, or the number of candidates
recommended for further study.

❏ The figures/tables and captions alone tell the story of the

paper. A reader should understand what your paper is about
and its major conclusions from the figure and figure captions

95

alone. If you want an example of how to do this well, look at
any National Geographic feature article. The articles are usually
lengthy, but one gets a good feeling of the article just by looking
at the pictures and captions.

❏ The acknowledgements are complete. This includes funding
sources (very important for the PI), computing resources (very
important for getting computer time), people that helped, and
any software you found helpful. See the specific section on
proper acknowledgements!

Miscellaneous advice
● Don’t feel like you need to start with a blank page and start

typing out a manuscript, start to finish. This rarely ends well.
Instead, begin by outlining sections, then gradually filling in
details and polishing things over time. You can (and probably
should) send Anubhav an initial outline (including planned
sections, figures, and main points) prior to do any serious
writing. This also works different areas of your brain and helps
prevent “writer’s block”, which is usually caused by being fearful
that any step you take won’t be “good enough”. Outlining and
drafting helps remove this block. The best visual demonstration
to see this is to view how even an accomplished artist creates a
final painting: https://youtu.be/Lye7kK8iOR8 . The final
product is stunning, but the initial stages are unimpressive - just
outlining, rough shading, etc. Thus, the key to a good final
product is to (i) start by outlining and (ii) keep polishing, keep
improving, keep iterating. The key to a great final product is
simply to continue thinking about, polishing, and improving
the manuscript even after the product looks very good. For

96

example, in the video linked to above, the artist already had a
very good painting at the 5:00 mark of the video (about 80%
through) and could easily have stopped at that point. Yet the
artist continues improving anyway to end up with something
even better.

● For sections of the paper that are meant to be conversational
(i.e., the Introduction, Conclusion, and Discussion), consider
speaking your written text out loud. It will help you identify
portions of the writing that are best re-worded for clarity.

● Keep it short and interesting, especially for early drafts. You
want to maintain a high level of reader interest and attention
throughout the paper - keep them excited! One can always add
more information that really feels missing in a later stage of the
draft. If there are tangents or very boring but necessary things
to include, they can go in either the methods or the
supplementary information where anyone can find it (usually
even those without a journal subscription!) and where they
won’t interfere with the narrative of the main results. The main
results should be exciting!

● Try to tell the whole story in two ways. First, a reader reading
the main text (but never looking at figures or captions) should
understand the whole story, just not all the details. This means
that your main text should contain guided tours of your Figures
(almost like an audio description) such that even someone who
is too lazy to look at the figure can keep reading and know what
was presented in the figure. Second, the figures and figure
captions should operate independently of the main text. A
reader just skimming your figure and figure captions without
reading any of the main text should get a sense for all the

97

important results, and the captions should give enough
information to let the reader know what they are looking at.

Tips/checklist for sending papers to Anubhav for
review
Here are some things you should to do to ensure a timely review of your
paper:
❏ Include page numbers in the manuscript.

❏ Ensure that what you are sending for review is as short as

possible. For the first review, perhaps this means just an
outline with Figures and Figure captions rather than a long
paper with a lot of text (that may need to be changed,
reorganized, etc).

❏ Ensure that the paper is as short as possible. Ideally, this
means an abstract of ~250 words (no more than 300). For the
main text, aim for 4500 words and no more than 5500 words
(including figure/table captions). If you have more, start putting
things in the supplement. We can move things out of
supplement later if really needed. If you have trouble deciding
what to move to the supplement, talk to Anubhav about how to
go about it. Please don’t send Anubhav papers that are >5500 words

long for review unless previously agreed this length of paper was

necessary - it means you haven’t yet done your job of reducing
the paper down to its essence.

98

Appendix I: Mechanics of writing
papers in Microsoft Word

Many researchers gravitate to LaTeX because of poor experiences with
Microsoft Word. With few exceptions, I’ve found the poor experiences
to be due to either (i) not using a good template (journal templates are
notoriously bad), (ii) lack of knowledge with using MS Word properly -
e.g. to reference figure captions or add citations, or (iii) using a very
outdated version of Word (i.e., prior to Word 2011).

That stated, there are certainly good reasons to use LaTeX as well.
Especially when a document has multiple collaborators (all of whom
need to add references), I tend to prefer LaTeX plus Overleaf which is
supported by LBL: https://www.overleaf.com/org/lbl . The Overleaf tool
keeps getting better making LaTeX very attractive these days.

For now, let’s stick with Word unless there’s good reason not to. Here’s
how to write a good-looking, easy-to-manage manuscript in Word.
Note that some of the instructions may differ slightly depending on your
version of Word.

Start with a visually attractive template
Rather than using journal templates, which are often buggy (and the
source of many frustrations with Microsoft Word), it is better to write
and modify your manuscript using the group’s template. To get started,
download the style from

99

https://hackingmaterials.lbl.gov/stuff/word_styles_v3.zip and start
writing in “AJ_paper_v3_example.docx” and save it as your own file
(alternatively, you can install the style file or template file included in
that zip archive). If the document looks strange, you may be in outline
view: simply go to View and click on Print Layout, then adjust the zoom
level to your liking (for large monitors, I often prefer two pages on the
screen).

Add sections and subsection headings properly
In the “Home” tab, there are various types of formatting styles including
Normal, Heading 1, Heading 2. To fully take advantage of this feature
make sure that you enter main section headings with Heading 1, your
subsections with Heading 2, and all main body text with Normal. In this
way, headings will renumber themselves as needed as you add more
headings and sub-headings. To reference a particular section, use the
“cross-referencing” feature described later in this document (do not just
manually type out the section/subsection name or number). Such
cross-references will automatically update as headings change.

Insert figures and tables and their captions properly

Use the following procedure to insert and place figures and tables:
1. At the desired point in your manuscript, start a fresh line of text

and insert your figure or table using the Insert->Photo or
Insert->Table command (or drag/drop a figure from your file
system, or copy-paste a table from Excel, etc..)

2. Right-click on the object and then select “Insert Caption”
(choose the proper label; e.g. Figure 1 vs Table 1) in the next

100

https://hackingmaterials.lbl.gov/stuff/word_styles_v3.zip

line and write your caption. Note that these captions will
auto-update and auto-renumber.

3. (optional). If you want to resize or reposition your figure/table
and caption, then with your mouse select both the object and
the caption and then Insert > Text Box: Now the object and its
caption should be nicely fit into a text box which you can simply
move to different places in your document using your mouse.
The text box is particularly helpful when writing in formatted
documents as it can be moved to your desired location.
Furthermore, there are formatting options in the text box that
allow the text to flow around the text box in your desired style
(right-click the entire text box and select from the various
“Wrap Text” options).

To refer to a figure or table in the main body of the document so that
numbering is handled automatically, see the next section on
cross-referencing objects.

Insert equations and equation numbers properly

In earlier versions of Word, it was a pain to add equation numbers. In
Word 2016 or greater, it is thankfully very simple:

1. Navigate to the point in the document where you want to insert
an equation

2. Insert an equation and write out your equation using the
Equation Editor tool

3. Staying within the equation, go to the end of the equation and
type a space followed by #(1).

4. Hit “enter” to complete the equation

101

Word will automatically number your equation.

For more, including automatic numbering, see this link (and in
particular the response from “Chris C”): https://bit.ly/2JccLG5

Cross-referencing objects: sections, subsections,
figures, tables
When referring to a section, subsection, figure, or table in your main
body text, it’s important that any numbers and/or quoted text are
automatically updated so that you don’t need to manually change these
references (e.g., do not manually type “Figure 1” in the text!!). Instead, to
cross-reference items:

1. Go to References > Cross-reference
2. Choose your Reference type first (e.g Figure) and choose “Only

label and number” under “Insert reference to:” part and then
click on Insert. The cross-references that are created this way
should be updated automatically even after you add or remove
an object of the same type before the current object. Note that
there are multiple styles of cross-reference - e.g., number only,
label and number, etc.

Such cross-references will automatically renumber/update as needed.
In rare cases, Word fails to automatically renumber/update cross
references. The easiest way to force a refresh is to open the “Print
Preview” dialog.

102

Citing articles

We suggest the use of Zotero to organize your research library and to
insert citations into Microsoft Word via the Zotero plug-in (or perhaps
create a BibTeX library for use with LaTeX). See the Zotero
documentation for more details.

Troubleshooting
When you move equations, tables, and figures around the caption
numbering should automatically update to reflect their positions in the
document. If this does not happen in your cross-references, go to File >
Print, then close out of the print menu (without printing). This can fix
issues of cross references not updating on-the-fly. This trick may make
take a couple tries to work.

Appendix J: Managing the group web
site

It is currently a two-step process to update the group web site:

● update the code in the hackingmaterials.github.io repo
● push the code to our GoDaddy hosting account, e.g., using FTP

to GoDaddy

In the future, it would be better to bypass the GoDaddy hosting step by
hosting the website entirely on Github using Github IO pages:
https://pages.github.com/, and then pointing it to the group domain
(hackingmaterials.lbl.gov) using the guide: http://bit.ly/2mBhxOl

103

To update the hosting itself, and handle things like SSL certificates
required by LBNL, Anubhav should have some details on the current
hosting in an email with subject “two things regarding group web site”
with a summary by Saurabh.

Appendix K: Group library

We have several technical books in the group that you can borrow (just
contact Anubhav). The only condition is that you should only borrow
books when you intend to read them. It is all too easy to take a book
with the intention to read it and let it simply take up space on your desk
for a year. So if you find yourself not using a book, just return it back.

A list of titles and some brief notes are available on an external site:
https://bit.ly/2Nx8H31

For reference information, the LBNL library also maintains a list of
electronic database subscriptions:

https://bit.ly/2HCePDQ

Appendix L: Staying up to date on
research and literature searches

The rate of publications keeps increasing every year, and it is now
becoming difficult or impossible to keep pace with all the latest
developments in any given field. Here are the main tools I use:

104

● Set up e-mail alerts for new publications from the main players
in your field (I do this through Google Scholar, but there are
other methods).

● Use article recommendation services to help you find articles
you missed from the above alerts from time to time. I prefer
Google Scholar’s recommended articles feature - they are
usually spot-on for me.

If you are new to a field, one way to try to get caught up is to find a
review article and work your way through that. Hopefully, the review
will cite some articles that you can follow up on, and those articles will
in turn cite other articles that look interesting to follow up on. If not, try
a different review article as a seed. You can also do a reverse search, i.e.,
see what articles have cited a particular article (e.g., use the “Cited by”
featured in Google Scholar). Once you’ve read through a dozen or so
articles, you should start to have a pretty decent grasp of the main works
and ideas in the field.

There are also more formal resources and databases for doing literature
and data searches. I would highly recommend look at the “Materials
Science” resources listed by the LBNL library: http://bit.ly/2HCePDQ

Appendix M: some miscellaneous
things
Some miscellaneous items are on an external site
(https://bit.ly/2HNtOLQ) rather than this handbook. They include:

105

● Some exercises to become familiar with materials informatics,
including pushing code to git and using Python data analysis
tools.

● Instructions on printing posters
● Instructions on managing the group web site
● Group Figshare

Thank you!

Thank you for contributing to this handbook!

● Saurabh Bajaj
● Alireza Faghaninia
● Joey Montoya
● John Dagdelen
● Nils Zimmerman
● Ben Ellis
● Maksim Rakitin
● Daniel Dopp
● Todd Karin

106

