automatminer.utils package¶
Subpackages¶
Submodules¶
automatminer.utils.log module¶
Utils for logging.
- 
automatminer.utils.log.initialize_logger(logger_name, log_dir='.', level=None)¶ Initialize the default logger with stdout and file handlers.
- 
automatminer.utils.log.initialize_null_logger(name)¶ Initialize the a dummy logger which will swallow all logging commands. :returns: The package name.
(Logger): A dummy logging instance with no output.
- Return type
 (Logger)
- 
automatminer.utils.log.log_progress(logger, operation)¶ Decorator to auto-log progress before and after executing a method, such as fit and transform. Should only be applied to DataFrameTransformers.
For example,
INFO: Beginning AutoFeaturizer fitting. … autofeaturizer logs … INFO: Finished AutoFeaturizer fitting.
- Parameters
 logger (logging.Logger) – A logger object to help log progress.
operation (str) – Some info about the operation you want to log.
- Returns
 A wrapper for the input method.
automatminer.utils.ml module¶
Tools and utils for machine learning.
- 
automatminer.utils.ml.is_greater_better(scoring_function)¶ Determines whether scoring_function being greater is more favorable/better. :param scoring_function: the name of the scoring function supported by
TPOT and sklearn. Please see below for more information.
- Returns (bool): Whether the scoring metric should be considered better if
 it is larger or better if it is smaller
- Return type
 
automatminer.utils.pkg module¶
Utils specific to this package.
- 
exception 
automatminer.utils.pkg.AutomatminerError(msg)¶ Bases:
BaseExceptionException specific to automatminer methods.
- 
exception 
automatminer.utils.pkg.VersionError(msg)¶ Bases:
automatminer.utils.pkg.AutomatminerErrorVersion errors
- 
automatminer.utils.pkg.check_fitted(func)¶ Decorator to check if a transformer has been fitted. :param func: A function or method.
- Returns
 A wrapper function for the input function/method.
- 
automatminer.utils.pkg.compare_columns(df1, df2, ignore=None)¶ Compare the columns of a dataframe.
- Parameters
 df1 (pandas.DataFrame) – The first dataframe.
df2 (pandas.DataFrame) – The second dataframe.
ignore ([str]) – The feature labels to ignore in the analyis.
- Returns
 - {“df1_not_in_df2”: [The columns in df1 not in df2],
 ”df2_not_in_df1”: [The columns in df2 not in df1], “mismatch”: (bool)}
- Return type
 (dict)
- 
automatminer.utils.pkg.get_version()¶ Get the version of automatminer without worrying about circular imports in __init__.
- Returns
 the version
- Return type
 (str)
- 
automatminer.utils.pkg.return_attrs_recursively(obj)¶ Returns attributes of an object recursively. Stops recursion when attrs go outside of the automatminer library.
- 
automatminer.utils.pkg.save_dict_to_file(d, filename)¶ Save a dictionary to a persistent file. Supported formats and extensions are text (‘.txt’), JSON (‘.json’), and YAML (‘.yaml’, ‘.yml’).
If no extension is provided, text format will be used.
- 
automatminer.utils.pkg.set_fitted(func)¶ Decorator to ensure a transformer is fitted properly. :param func: A function or method.
- Returns
 A wrapper function for the input function/method.