automatminer.preprocessing.tests package¶
Submodules¶
automatminer.preprocessing.tests.test_core module¶
-
class
automatminer.preprocessing.tests.test_core.TestFeatureReduction(methodName='runTest')¶ Bases:
unittest.case.TestCase-
setUp()¶ Hook method for setting up the test fixture before exercising it.
-
test_TreeBasedFeatureReduction()¶
-
test_lower_corr_clf()¶
-
test_rebate()¶
-
-
class
automatminer.preprocessing.tests.test_core.TestPreprocess(methodName='runTest')¶ Bases:
unittest.case.TestCase-
setUp()¶ Hook method for setting up the test fixture before exercising it.
-
test_DataCleaner()¶ A basic test ensuring Preprocess can handle numerical features and features/targets that may be strings but should be numbers.
Returns: None
-
test_DataCleaner_big_nan_handler_warning()¶ Ensure the DataCleaner throws a warning or error when the number of nan samples and fraction is high (i.e., something has gone horribly wrong in featurization!)
-
test_DataCleaner_emergency_na_transform_imputation()¶ For the case where a fit DataCleaner must include feature X, but in the df-to-be-transformed that feature is all nan, which makes it unable to be imputed correctly.
Current implementation dictates this “emergency” be resolved by imputing with the mean of feature x from the fitted_df.
-
test_DataCleaner_feature_na_method()¶
-
test_DataCleaner_na_method_feature_sample_interaction()¶
-
test_DataCleaner_sample_na_method()¶
-
test_FeatureReducer_advanced()¶
-
test_FeatureReducer_basic()¶
-
test_FeatureReducer_classification()¶
-
test_FeatureReducer_combinations()¶
-
test_FeatureReducer_pca()¶
-
test_FeatureReducer_transferability()¶
-
property
test_df¶ Prevent any memory problems or accidental overwrites.
- Returns
A pandas deataframe deepcopy of the testing df.
- Return type
(pd.DataFrame)
-
test_manual_feature_reduction()¶
-
test_saving_feature_from_removal()¶
-