automatminer.preprocessing.tests package¶
Submodules¶
automatminer.preprocessing.tests.test_core module¶
- 
class 
automatminer.preprocessing.tests.test_core.TestFeatureReduction(methodName='runTest')¶ Bases:
unittest.case.TestCase- 
setUp()¶ Hook method for setting up the test fixture before exercising it.
- 
test_TreeBasedFeatureReduction()¶ 
- 
test_lower_corr_clf()¶ 
- 
test_rebate()¶ 
- 
 
- 
class 
automatminer.preprocessing.tests.test_core.TestPreprocess(methodName='runTest')¶ Bases:
unittest.case.TestCase- 
setUp()¶ Hook method for setting up the test fixture before exercising it.
- 
test_DataCleaner()¶ A basic test ensuring Preprocess can handle numerical features and features/targets that may be strings but should be numbers.
Returns: None
- 
test_DataCleaner_big_nan_handler_warning()¶ Ensure the DataCleaner throws a warning or error when the number of nan samples and fraction is high (i.e., something has gone horribly wrong in featurization!)
- 
test_DataCleaner_emergency_na_transform_imputation()¶ For the case where a fit DataCleaner must include feature X, but in the df-to-be-transformed that feature is all nan, which makes it unable to be imputed correctly.
Current implementation dictates this “emergency” be resolved by imputing with the mean of feature x from the fitted_df.
- 
test_DataCleaner_feature_na_method()¶ 
- 
test_DataCleaner_na_method_feature_sample_interaction()¶ 
- 
test_DataCleaner_sample_na_method()¶ 
- 
test_FeatureReducer_advanced()¶ 
- 
test_FeatureReducer_basic()¶ 
- 
test_FeatureReducer_classification()¶ 
- 
test_FeatureReducer_combinations()¶ 
- 
test_FeatureReducer_pca()¶ 
- 
test_FeatureReducer_transferability()¶ 
- 
property 
test_df¶ Prevent any memory problems or accidental overwrites.
- Returns
 A pandas deataframe deepcopy of the testing df.
- Return type
 (pd.DataFrame)
- 
test_manual_feature_reduction()¶ 
- 
test_saving_feature_from_removal()¶ 
-