automatminer.automl.tests package¶
Submodules¶
automatminer.automl.tests.test_adaptors module¶
-
class
automatminer.automl.tests.test_adaptors.TestSinglePipelineAdaptor(methodName='runTest')¶ Bases:
unittest.case.TestCase-
setUp()¶ Hook method for setting up the test fixture before exercising it.
-
test_BaseEstimator()¶
-
test_BaseEstimator_classification()¶
-
test_Pipeline()¶
-
test_feature_mismatching()¶
-
automatminer.automl.tests.test_base module¶
Tests for base classes for automl.
-
class
automatminer.automl.tests.test_base.TestAdaptorBad¶ Bases:
automatminer.automl.base.DFMLAdaptorA test adaptor for automl backends, implemented incorrectly.
-
class
automatminer.automl.tests.test_base.TestAdaptorGood(config_attr)¶ Bases:
automatminer.automl.base.DFMLAdaptorA test adaptor for automl backends, implemented correctly.
-
property
backend¶ The AutoML backend object. Does not need to implement any methods for compatibility with higher level classes. If no AutoML backend is present e.g., SinglePipelineAdaptor, backend = None.
Does not need to be serializable, as matpipe.save will not save backends.
-
property
best_pipeline¶ The best ML pipeline found by the backend. Can be any type though BaseEstimator is preferred.
1. MUST implement a .predict method unless DFMLAdaptor.predict is overridden!
MUST be serializable!
Should be as close to the algorithm as possible - i.e., instead of calling TPOTClassifier.fit, calls TPOTClassifier.fitted_pipeline_, so that examining the true form of models is more straightforward.
-
property
features¶ The features being used for machine learning.
- Returns
The feature labels
- Return type
([str])
-
fit(**kwargs)¶
-
property
fitted_target¶ The target (a string) on which the adaptor was fit on. :returns: The fitted target label. :rtype: (str)
-
predict(**kwargs)¶
-
property